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Abstract
We look at several proposals to engineer the set of fundamental searching and sorting algorithms.
Aspects are improving locality of disk access and cache access, the efficiency tuning by reducing the
number of branch mispredictions, and reducing at leading factors hidden in the Big-Oh notation.
These studies in algorithm engineering, in turn, lead to exiting new algorithm designs. On the
practical side, we will establish that efficient sorting and searching algorithms are in tight collabora-
tion, as sorting is used for finding duplicates in disk-based search, and heap structures designed for
efficient graph search can be exploited in classical and adaptive sorting. We indicate the effects of
engineered sorting and searching for combined task and motion planning.
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1 Introduction

Several decades ago, in the early days of computer science Donald E. Knuth and Kurt
Mehlhorn both dedicated a book of their monographs to the topic of sorting and searching.
Since then, driven by the advances in computer hardware technology there have been several
proposals to engineer the set of fundamental algorithms. One aspect we look at is improving
locality of disk access and cache access, another one efficiency tuning by reducing the number
of branch mispredictions. We also will look at leading factors hidden in Landau’s Big-Oh
notation to study how far the algorithms are from their respective lower bounds. We highlight
one result in sorting and one in searching, as well as one possible application area.

2 Sorting

QuickXsort is a highly efficient in-place sequential sorting scheme that mixes Hoare’s Quicksort
algorithm with X, where X can be chosen from a wider range of other known sorting algorithms,
like Heapsort, Insertionsort and Mergesort. Its major advantage is that QuickXsort can be
in-place even if X is not. We provide general transfer theorems expressing the number of
comparisons of QuickXsort in terms of the number of comparisons of X. More specifically, if
pivots are chosen as medians of (not too fast) growing size samples, the average number of
comparisons of QuickXsort and X differ only by o(n)-terms. For median-of-k pivot selection
for some constant k, the difference is a linear term whose coefficient we compute precisely. For
instance, median-of-three QuickMergesort uses at most n lg n−0.8358n+O(log n) comparisons.
Furthermore, we examine the possibility of sorting base cases with some other algorithm
using even less comparisons. By doing so the average-case number of comparisons can be
reduced down to n lg n− 1.4112n + o(n) for a remaining gap of only 0.0315n comparisons
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to the known lower bound (while using only O(log n) additional space and O(n log n) time
overall). Implementations of these sorting strategies show that the algorithms challenge
well-established library implementations like Musser’s Introsort.

3 Searching

A priority queue – a data structure supporting, the operations minimum (top), insert (push),
and extract-min (pop) – is said to operate in-place if it uses O(1) extra space in addition to the
n elements stored at the beginning of an array. Prior to this work, no in-place priority queue
was known to provide worst-case guarantees on the number of element comparisons that are
optimal up to additive constant terms for both insert and extract-min. In particular, for
the standard implementation of binary heaps, insert and extract-min operate in logarithmic
time while involving at most dlg ne and 2 lg n [could possibly be reduced to lg lg n + O(1) and
lg n+log∗ n+O(1)] element comparisons, respectively. We propose a variant of a binary heap
that operates in-place, executes minimum and insert in O(1) worst-case time, and extract-min
in O(lg n) worst-case time while involving at most lg n + O(1) element comparisons. These
efficiencies surpass lower bounds known for binary heaps, thereby resolving a long-standing
theoretical debate.

4 Application

Logistics operations often require a robot to pickup and deliver objects from multiple
locations within certain time frames. This is a challenging task-and-motion planning problem
as it intertwines logical and temporal constraints about the operations with geometric and
differential constraints related to obstacle avoidance and robot dynamics. To address these
challenges, we couple vehicle routing over a discrete abstraction with sampling-based motion
planning. On the one hand, vehicle routing provides plans to effectively guide sampling-based
motion planning as it explores the vast space of feasible motions. On the other hand, motion
planning provides feasibility estimates which vehicle routing uses to refine its plans. This
coupling makes it possible to extend the state-of-the-art in multi-goal motion planning by
also incorporating capacities, pickups, and deliveries in addition to time windows. When
not all pickups and deliveries can be completed in time, the approach seeks to minimize the
violations and maximize the profit.

5 Conclusion

We passed by various priority queue designs for pimping up shortest path search and
recent mixtures of sorting algorithms that show both outstanding theoretical and practical
performances. On the theoretical side we introduced an in-place heap, for which minimum and
insert take O(1) worst-case time, and extract-min takes O(lg n) worst-case time and involves
at most lg n + O(1) element comparisons. We established an algorithm which in a sequence
of n min-deletes and m decrease-keys requires 2m + 1.5n lg n + o(n) comparisons. In sorting,
the average-case number of comparisons can be reduced down to n lg n− 1.4112n + o(n) for
a remaining gap of only 0.0315n comparisons to the known lower bound, while using only
O(lg n) additional space and O(n lg n) time overall.

On the practical side, we established that efficient sorting and searching algorithms are
in tight collaboration, as sorting is used for finding duplicates in disk-based search, and new
heap structures designed for efficient graph search can be exploited in classical and adaptive
sorting. We indicated the effects engineered sorting and searching for combined task and
motion planning in robotics.
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