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Abstract
We study Crystal Structure Prediction, one of the major problems in computational chemistry. This
is essentially a continuous optimization problem, where many different, simple and sophisticated,
methods have been proposed and applied. The simple searching techniques are easy to understand,
usually easy to implement, but they can be slow in practice. On the other hand, the more sophisticated
approaches perform well in general, however almost all of them have a large number of parameters
that require fine tuning and, in the majority of the cases, chemical expertise is needed in order to
properly set them up. In addition, due to the chemical expertise involved in the parameter-tuning,
these approaches can be biased towards previously-known crystal structures. Our contribution is
twofold. Firstly, we formalize the Crystal Structure Prediction problem, alongside several other
intermediate problems, from a theoretical computer science perspective. Secondly, we propose an
oblivious algorithm for Crystal Structure Prediction that is based on local search. Oblivious means
that our algorithm requires minimal knowledge about the composition we are trying to compute a
crystal structure for. In addition, our algorithm can be used as an intermediate step by any method.
Our experiments show that our algorithms outperform the standard basin hopping, a well studied
algorithm for the problem.
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1 Introduction

The discovery of new materials has historically been made by experimental investigation
guided by chemical understanding. This approach can be both time consuming and challenging
because of the large space to be explored. For example, a “traditional” method for discovering
inorganic solid structures relies on knowledge of material chemistry coupled with repeating
synthesis experiments and systematically varying elemental ratios, each of which can take
lots of time [25, 26]. As a result there is a very large unexplored space of chemical systems:
only 72% of binary systems, 16% of ternary, and just 0.6% of quaternary systems have been
studied experimentally [27].

These inefficiencies forced physical scientists to develop computational approaches in
order to tackle the problem of finding new materials. The first approach is based on data
mining where only pre-existing knowledge is used [7, 11, 13, 15, 23]. Although this approach
has proven to be successful, there is the underlying risk of missing best-in-class materials
by being biased towards known crystal structures. Hence, the second approach tries to
fill this gap and aims at finding new materials with little, or no, pre-existing knowledge,
by predicting the crystal structure of the material. This approach has led to the discovery
of several new, counterintuitive, materials whose existence could not be deduced by the
structures of previously-known materials [6].

Several heuristic methods have been suggested for crystal structure prediction. All these
methods are based on the same fundamental principle. Every arrangement of ions in the
3-dimensional Euclidean space corresponds to an energy value and it defines a point on
the potential energy surface. Then, the crystal structure prediction problem is formulated
as a mathematical optimization problem where the goal is to compute the structure that
corresponds to the global minimum of the potential energy surface, since this is the most likely
structure that corresponds to a stable material. The difficulties in solving this optimization
problem is that the potential energy surface is highly non convex, with exponentially many,
with respect to the number of ions, local minima [17]. For this reason, several different
algorithmic techniques were proposed ranging from simple techniques, like quasi-random
sampling [9, 21, 20, 22], basin hopping [12, 28], and simulated annealing techniques [18, 24],
to more sophisticated techniques, like evolutionary and genetic algorithms [4, 8, 14, 16, 30],
and tiling approaches [6, 5]. A recent comprehensive review on these techniques can be found
in [17].

The simple searching techniques are easy to understand, usually easy to implement, and
they are unbiased, but they can be slow in practice. On the other hand, the more sophisticated
approaches perform well in general, however almost all of them have a large number of
parameters that require fine tuning and, in the majority of the cases, chemical expertise
is needed in order to properly set them up. In addition, due to the chemical expertise
involved in the parameter-tuning, these approaches can be biased towards previously-known
structures.

The majority of the abovementioned heuristic techniques work, at a very high level, in a
similar way. Given a current solution x for the crystal structure prediction problem, i.e., a
location for every ion in the 3-dimensional space, they iteratively perform the following three
steps.

1. Choose a new potential solution x′. This can be done by taking into account, or modifying,
x.

2. Perform gradient descent on the potential energy surface starting from x′, until a local
minimum is found. This process is called relaxation of x′.

3. Decide whether to keep x as the candidate solution or to update it to the solution found
after relaxing x′.
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For example, basin hopping algorithms randomly choose x′, they relax x′ and if the
energy of the relaxed structure is lower than the x, or a Metropolis criterion is satisfied,
they accept this as a current solution; else they keep x and they randomly choose x′′. The
procedure usually stops when the algorithm fails to find a structure with lower energy within
a predefined number of iterations. The more sophisticated algorithms take into account
knowledge harvested from chemists and put constraints on the way x′ is selected. For example,
the MC-EMMA [6] and the FUSE [5] algorithms use a set of building blocks to construct x′.
These building blocks are local configurations of ions that are present in, or similar to, known
crystal structures. These approaches restrict the search space, which accelerate search, but
reduce the number of possible solutions.

This general algorithm is easy to understand, however there are some hidden difficulties
that make the problem more challenging. Firstly, it is not trivial even how to evaluate the
potential energy of a structure. There are several different methods for calculating the energy
of a structure, ranging from quantum mechanical methods, like density functional theory 1, to
force fields methods 2, like the Buckingham-Coulomb potential function. All of which though,
are hard to compute (see Section 2.1) from the point of view of (theoretical) computer science
and thus only numerical methods are known and used in practice for them [10]; still there
are cases where some methods need considerable time to calculate the energy of a structure.
This yields another, more important, difficulty, the relaxation of a structure. Since it is hard
to compute the energy of a structure, it is even harder to apply gradient descent on the
potential energy surface. For these reasons, the majority of the heuristic algorithms depend
on external, well established, codes [10] for computing the aforementioned quantities. Put
differently, both energy computations and relaxations of structures are treated as oracles or
black boxes.

1.1 Our contribution
Our contribution is twofold. Firstly, we formalize the Crystal Structure Prediction problem
from the theoretical computer science perspective; to the best of our knowledge, this is among
the few papers that attempt to connect computational chemistry and computer science.
En route to this, we introduce several intermediate open problems from computational
chemistry in CS terms. Any (partial) positive solution to these questions can significantly
help computational chemists to identify new materials. On the other hand, any negative
result can formally explain why the discovery of new materials is a notoriously difficult task.

Our second contribution is the partial answer for some of the questions we cast. In
general, our goal is to create oblivious algorithms that are easy to implement, they are fast,
and they work well in practice. With oblivious we mean that we are seeking for general
procedures that require minimal input and they have zero, or just a few, parameters chosen
by the user.

We propose a purely combinatorial method for estimating the energy of a structure,
which we term depth energy computation. We choose to compare our method against
GULP [10], which is considered to be the state of the art for computing the energy of a
structure and for performing relaxations when the Buckingham-Coulomb energy is used.
Our method requires only the charges of the atoms and their corresponding Buckingham
coefficients to work; see Eq. 2 in Section 2.1. In addition, it needs only one parameter, the

1 https://en.wikipedia.org/wiki/Density_functional_theory
2 https://en.wikipedia.org/wiki/Force_field_(chemistry)
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(a) Unit cell. (b) Supercell.

Figure 1 Most stable configuration of SrTiO3.

depth k. We experimentally demonstrate that our method monotonically approximates
with respect to k the energy computed by GULP and that it achieves an error of 0.0032
for k = 6. Our experiments show that the structure that achieves the minimum energy in
depth 1 is likely to be the structure with the minimum energy overall. In fact we show
something much stronger. If the energy of x is lower than the energy of x′ when it is
computed via the depth energy computation for k = 1, then, almost always, the energy
of x will be lower than the energy of x′ when it is computed via GULP.
We derive oblivious algorithms for choosing which structure to relax next. All of our
algorithms are based on local search. More formally, starting with x and using only local
changes we select x′. We define several “combinatorial neighborhoods” and we evaluate
their efficiency. Our neighborhoods are oblivious since they only need access to an oracle
that calculates the energy of a structure. We show that our method outperforms basin
hopping. Moreover, we view our algorithms as an intermediate step before relaxation
that can be applied to any existing algorithm.

2 Preliminaries

A crystal is a solid material whose atoms are arranged in a highly ordered configuration,
forming a crystal structure that extends in all directions. A crystal structure is characterized
by its unit cell; a parallelepiped that contains atoms in a specific arrangement. The unit cell
is the period of the crystal; unit cells are stacked in the three dimensional space to form the
crystal. In this paper we focus on ionically bonded crystals, which we describe next; what
follows is relevant only on crystals of this type. In order to fully define the unit cell of a
ionically bonded crystal structure, we have to specify a composition, unit cell parameters,
and an arrangement of the ions.

Composition. A composition is the chemical formula that describes the ratio of ions that
belong to the unit cell. The chemical formula contains anions, negatively charged ions, and
cations, positively charged ions. The chemical formula is a way of presenting information
about the chemical proportions of ions that constitute a particular chemical compound, and
it does not provide any information about the exact number of atoms in the unit cell. More
formally, the composition is defined by a set of distinct chemical elements {e1, e2, . . . , em},
their multiplicity ni, and a non-zero integer charge qi for each element i. The number m
denotes the total number of distinct chemical elements, and ni/

∑m
j=1 nj is the proportion

of the atoms of type ei in the unit cell. It is required that the sum of the charges adds
up to zero, i.e. ,

∑m
i=1 qini = 0, so that the unit cell is charge neutral. For example, the
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composition for Strontium Titanate, SrTiO3, denotes that the following hold. For every ion
of strontium (Sr) in the unit cell, there exists one ion of titanium (Ti) and three ions of
oxygen (O). Furthermore, the charge of every ion of Sr is +2, of Ti is +4, and of O is −2.
Hence, when the ratios of the ions are according to the composition, the charge of the unit
cell is zero.

Another parameter for every atom is the atomic radius. This usually corresponds to the
distance from the center of the nucleus to the boundary of the surrounding shells of electrons.
Since the boundary is not a well-defined physical entity, there are various non-equivalent
definitions of atomic radius. In crystal structures though, the ionic radius is used and usually
is treated as a hard sphere. Thus, we will use ρi to denote the ionic radius of the element ei.

Unit cell parameters. Unit cell parameters provide a formal description of the parallelepiped
that represents the unit cell. These include the lengths y1, y2, y3 of the parallelepiped in
every dimension and the angles θ12, θ13, and θ23 between the corresponding facets. For
brevity, we denote y = (y1, y2, y3) and θ = (θ12, θ13, θ23), and we use (y, θ) to denote the unit
cell parameters.

Arrangement. An arrangement describes the position of each atom of the composition
in the unit cell. The position of ion i is specified by a point xi = (xi1, xi2, xi3) in the
parallelepiped defined by the unit cell parameters; fractional coordinates xi denote the
location of the nucleus of the ion i in the unit cell. A unit cell parameters-arrangement
combination (y, θ, x) in a unit cell with n ions is a point in the 3n + 6-dimensional space.
For any two points xi and xj we will use d(xi, xj) to denote their Euclidean distance.

As we have already said, a unit cell parameters-arrangement configuration (y, θ, x) defines
the period of an infinite structure that covers the whole 3d space. To get some intuition,
assume that we have an orthogonal unit cell, i.e., all the angles are 90 degrees. Then for every
ion with position (xi1, xi2, xi3) in the unit cell, there exist “copies” of the ion in the positions
(k1 · y1 + xi1, k2 · y2 + xi2, k3 · y3 + xi3) for every possible combination of integers k1, k2, and
k3. A unit cell parameters-arrangement configuration is feasible if the hard spheres of any
two ions of the crystal structure do not overlap; formally, it is feasible if for every two ions i
and j it holds that d(xi, xj) ≥ ρi + ρj .

2.1 Energy

Any unit cell parameters-arrangement configuration of a composition corresponds to a
potential energy. When the number of ions in the unit cell is fixed, the set of configurations
define the potential energy surface.

Buckingham-Coulomb potential is among the most well adopted methods for computing
energy [3, 29] and it is the sum of the Buckingham potential and the Coulomb potential. The
Coulomb potential is long-range and depends only on the charges and the distance between
the ions; for a pair of ions i and j, the Coulomb energy is defined by

CE(i, j) := qiqj
d(xi, xj)

. (1)

Note, ions i and j can be in different unit cells.
The Buckingham potential is short-range and depends on the species of the ions and

their distance. More formally, it depends on positive composition-dependent constants

SEA 2020



21:6 Crystal Structure Prediction via Oblivious Local Search

Aei,ej
, Bei,ej , and Cei,ej for every pair of species ei and ej ; here i can be equal to j 3. So,

for the pair of ions i, of specie ei, and j, of specie ej , the Buckingham energy is

BE(i, j) := Aei,ej · exp(−Bei,ej · d(xi, xj))−
Cei,ej

d(xi, xj)6 . (2)

Again, ions i and j can be in different unit cells.
Let S(xi, ρ) denote the sphere with centre xi and radius ρ. The total energy of a crystal

structure whose unit cell is characterized by n ions with arrangement x = (x1, . . . , xn) is
then defined

E(y, θ, x) = lim
ρ→∞

n∑
i=1

∑
j 6=i,j∈S(xi,ρ)

(BE(i, j) + CE(i, j)) .

E(y, θ, x) conditionally converges to a certain value [19] and usually numerical approaches
are used to compute it. For this reason, and since we aim for an oblivious algorithm, we view
the computation of the energy of a structure as a black box. More specifically, we assume
that we have an oracle that given any structure (y, θ, x), it returns its corresponding energy.

I Open Question 1. Given a composition and Buckingham parameters for it, find a simple,
purely combinatorial way that approximates the energy for every crystal structure.

I Open Question 2. Given a composition {e1, e2, . . . , em} and an oracle that computes the
energy of every structure for this composition, learn efficiently (with respect to the number of
oracle calls) the Buckingham parameters Aei,ej

, Bei,ej
, and Cei,ej

for every i, j ∈ [m].

Relaxation. The relaxation of a crystal structure (y, θ, x) computes a stationary point
on the potential energy surface by applying gradient descent starting from (y, θ, x). The
relaxation of a structure can change both the arrangement x of the ions in the unit cell and
the unit cell parameters (y, θ) of the unit cell. We follow a similar approach as we did with
the energy and we assume that there is an oracle that given a crystal structure (y, θ, x) it
returns the relaxed structure.

I Open Question 3. Find an alternative, quicker, way to compute an approximate local
minimum when:
a) the unit cell parameters (y, θ) of the unit cell are fixed;
b) the arrangement x of the ions is fixed;
c) both unit cell parameters and arrangement are free.

2.2 Crystal Structure Prediction problems
In crystal structure prediction problems the general goal is to minimize the energy in the unit
cell. There are two kinds of problems we are concerned. The first cares only about the value
of the energy and the second one cares for the arrangement and the unit cell parameters that
achieve the minimum energy. From the computational chemistry point of view, both questions
are interesting in their own right. The existence of a unit cell parameters-arrangement that

3 The Buckingham constants are composition-depended since they can have small discrepancies in different
compositions. For example the constants ATi,O, BTi,O, and CTi,O for SrTiO3 can be different than those
for MgTiO3. There is a long line of research in computational chemistry that tries to learn/estimate
the Buckingham constants for various compositions. In addition, more than one set of Buckingham
constants can be available for a given composition.
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achieves lower-than-currently-known energy usually suffices for constructing a new material.
On the other hand, identifying the arrangement and the unit cell parameters of a crystal
structure that achieves the lowest possible energy can help physical scientists to predict the
properties of the material.

MinEnergy

Input: A composition with its corresponding Buckingham constants, a positive
integer n, and a rational Ê.
Question: Is there a crystal structure (y, θ, x) for the composition with n ions that
is neutrally charged and achieves Buckingham-Coulomb energy E(y, θ, x) < Ê?

MinStructure

Input: A composition with its corresponding Buckingham constants, a positive
integer n.
Task: Find a crystal structure (y, θ, x) for the composition with n ions that is
neutrally charged and the Buckingham-Coulomb energy E(y, θ, x) is minimized.

The second class of problems, the ones that ultimately computational chemists would
like to solve, take as input only the composition and the goal is to construct a unit cell, with
any number of atoms, such that the average energy per ion is minimized.

AvgEnergy

Input: A composition with its corresponding Buckingham constants and a rational
Ê.
Question: Is there a crystal structure for the composition that is neutrally charged
and E(y,θ,x)

n < Ê?

AvgStructure

Input: A composition with its corresponding Buckingham constants.
Task: Find a crystal structure for the composition that is neutrally charged and the
average Buckingham-Coulomb energy per ion in the unit cell, E(y,θ,x)

n , is minimized.

Although the problems are considered to be intractable [17], only recently the first correct
NP-hardness result was proven for a variant of CSP [1]. However, for the problems presented,
there are no correct NP-hardness results in the literature.

I Open Question 4. Provide provable lower bounds and upper bounds for the four problems
defined above.

I Open Question 5. Construct a heuristic algorithm that works well in practice.

3 Local Search

Local search algorithms start from a feasible solution and iteratively obtain better solutions.
The key concept for the success of such algorithms, is given a feasible solution, to be able
to efficiently find an improved one. Put formally, a local search algorithm is defined by
a neighbourhood function N and a local rule r. In every iteration, the algorithm does the
following.

SEA 2020
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Has the current best solution x.
Computes the neighbourhood N(x).
If there is an improved solution x′ in N(x), then it updates x according to the rule r, i.e.
x′ = r(N(x)); else it terminates and outputs x.

The neighborhood N(x) of a solution x consists of all feasible solutions that are “close” in
some sense to x. The size of the neighborhood can be constant or a function of the input. In
principle, the larger the size of the neighborhood, the better the quality of the locally optimal
solutions. However, the downside of choosing large neighborhoods is that, in general, it
makes each iteration computationally more expensive. Running time and quality of solutions
are competing considerations, and the trade off between them can be determined through
experimentation.

We study the following combinatorial neighborhoods for Crystal Structure Prediction.
All of them keep the unit cell parameters fixed and change only the arrangement x of the
n ions. Thus, for notation brevity, we define the neighbourhoods only with respect to the
arrangement x.
1. k-ion swap. This neighborhood consists of all feasible arrangements that are produced

by swapping the locations of k ions. The size of this neighbourhood is O(nkk!).
2. k-swap. This neighborhood is parameterized by a discretization step δ. Using δ we

discretize the unit cell and then we perform swaps of k ions with the content of every
point of the discretization. So, an ion can swap positions with another ion, or simply move
to another vacant position. Again, we take into account only the feasible arrangements
of the ions. The size of this neighbourhood is O(nkk!/δ3k).

3. Axes. This neighborhood has a parameter δ and computes the following for every ion i.
Firstly, for every dimension it computes a plane parallel to the corresponding facet of the
unit cell and contains the ion i. The intersection of any pair of these planes defines an
“axis”. Then, this axis is discretized according to δ. The neighborhood locates the ion to
every point on the discretization on the three axes and we keep only the arrangements
that are feasible. The size of this neighbourhood is O(n/δ).

In all of our neighborhoods, we are using a greedy rule to choose x′; x′ is an arrangement
that achieves the minimum energy in N(x).

4 Algorithms

We propose two algorithms. The first one is a step towards answering Open Question 1 while
the second is a heuristic for MinStructure problem.

For Open Question 1, we propose the depth energy computation for estimating the energy
of a structure. Our algorithm has a single parameter, the depth parameter k, and works
as follows. Given a crystal structure, it creates k layers around the unit cell with copies of
the structure. So, for the unit cell parameters (y, θ) and the arrangement x of n atoms the
energy is E(y, θ, x) =

∑n
i=1

∑
j 6=i,j∈D(k) (BE(i, j) + CE(i, j)), where D(k) denotes the set

of ions in the k layers of unit cells, and BE(i, j) and CE(i, j) are computed as in Equations 2
and 1 respectively.

For MinStructure problem, we slightly modify basin hopping. In a step of basing
hopping, a structure is randomly chosen and it is followed by a relaxation. Our algorithm
applies a combinatorial local search using the Axes neighborhood, since this turned out to be
the best among our heuristics, before the relaxation. So, we will perform a relaxation, only
after combinatorial local search cannot further improve the solution. Our algorithm can be
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used as a standalone one and it can also be integrated into any other heuristic algorithm for
the Crystal Structure Prediction problem since it is oblivious. In addition, it provides a very
fast criterion that when it succeeds it guarantees finding a lower energy crystal structure.

5 Experiments

In this section we evaluate our algorithms via experimental simulations. We first focus
on SrTiO3 which we use as a benchmark. We do this because it is a well studied com-
position for which the Crystal Structure Prediction problem is solved. We have imple-
mented the algorithms in Python 2.7 and we use the Atomic Simulation Environment
(https://wiki.fysik.dtu.dk/ase/) package for setting up, manipulating, running, visual-
izing and analyzing atomistic simulations. All experiments were performed on a 4-core Intel
i7-4710MQ with 8GB of RAM.

Table 1 Comparison between depth approach and GULP for SrTiO3. Energy is in electronvolts
(eV). The energy difference shows the average difference in energy between the depth approach and
the energy calculated by GULP. Results averaged over 2000 random feasible structures.

Energy difference
k 1 2 3 4 5 6

15 atoms 0.0639 0.0226 0.0114 0.0068 0.0045 0.0032
20 atoms 0.0670 0.0238 0.0120 0.0072 0.0047 0.0033

We evaluate the depth energy computation in several different dimensions. For all the
experiments we performed for energy computation, we fixed the unit cell to be cubic. Firstly,
we evaluate how depth energy computation behaves with respect to k. We see that the
method converges very fast and k = 6 already achieves accuracy of three decimal points.
Then, we compare our depth approach against GULP; see Table 1. Our goal is to provide an
intuitively simpler to interpret and work with method for computing the energy. Even though
the energy calculated by the depth approach differs from the one calculated by GULP, we
observe that the relative energies between two random arrangements remain usually the same
even for k = 1. To be more precise, let E1(x) denote the energy of a feasible arrangement
x when k = 1 and let EG(x) denote the energy of this arrangement as it is computed by
GULP. Our experiments show that if for two random feasible arrangements x1 and x2 it
holds that E1(x1) < E1(x2), then EG(x1) < EG(x2) for 99.8% of 1000 pairs of arrangements.
This percentage reaches 100% for k = 6. For the “special” arrangement of ions x∗ that
minimizes the energy computed by GULP, that is x∗ = argminEG(x), our experiments show
that it is always true that Ek(x∗) < Ek(x), for every k = 1, . . . , 6, where x is a random
feasible structure over 10000 of them. So, this is a good indication that the arrangement
that minimizes the energy for k = 1, also minimizes the energy overall. We view this as a
striking result; it significantly simplifies the problem thus new, analytical, methods can be
derived for the problem.

The next set of experiments compares the three neighborhoods described in Section 3 for
SrTiO3

4. We compare them in several different dimensions: the average CPU time they need
in order to find a local optimum with respect to their combinatorial neighborhood and the
average drop in energy until they reach such a local optimum (Tables 2 and 4); the average
CPU time the relaxation needs starting from such local minimum and the average drop in

4 The values of the Buckingham parameters can be found in the full version of the paper [2]
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energy from relaxation (Tables 3 and 5). In addition, for the case of SrTiO3, we compare how
often we can find the optimal arrangement from a single structure. We observe that the Axes
neighborhood has the best tradeoff between energy drop and CPU time. The 2-ion-swap
neighbourhood outperforms the other two in terms of running time, however it seems to
decrease the probability of finding the best arrangement when performing a relaxation on the
resulting structures. This renders the use of 2-ion-swap neighbourhood inappropriate. Axes
neighborhood is significantly faster and performs smoother in terms of running time than the
2-swap neighbourhood. However, the latter one performs better with respect to the energy
drop, which is expected since axes is a subset of the 2-swap neighbourhood. In addition, the
relaxation from the local minimum found by 2-swap significantly improves the probability
of finding the best arrangement with only one relaxation. We should highlight that there
exist structures where the relaxation cannot improve their energy, but the neighborhoods do;
hence using Axes neighborhood we can escape from some local minima of the continuous
space.

Table 2 Comparison of local neighbourhoods for reaching a combinatorial minimum for SrTiO3

with 15 atoms per unit cell and δ = 1Å (375 grid points). Time is in seconds and energy in
electronvolts (eV). Results averaged over 1000 arrangements.

Neighbourhood Running time Time stdev Energy drop Energy drop stdev
Axes 5.36 1.54 13.46 10.60
2-ion swap 0.96 0.33 7.75 8.45
2-swap 34.66 14.06 16.21 10.94

Table 3 Evaluation of relaxation procedure after using a combinatorial neighborhood for SrTiO3

with 15 atoms per unit cell. Time is in seconds and energy in electronvolts (eV). Results averaged
over 1000 arragnements.

Neighbourhood Running time Time
stdev Energy drop Energy drop

stdev
Global

minimum
Random structures-GULP 8.80 6.35 18.60 10.26 6.6%
Axes-GULP 7.92 6.16 5.53 2.28 10.0%
2-ion swap-GULP 8.82 6.25 11.09 5.64 4.7%
2-swap-GULP 5.14 5.08 2.79 1.05 14.8%

Table 4 Comparison of local neighbourhoods for reaching a combinatorial minimum for Y2Ti2O7

and δ = 1Å (343 grid points). Time is in seconds and energy in electronvolts (eV). Results averaged
over 1000 arrangements.

Neighbourhood Running time Time stdev Energy drop Energy drop stdev
Axes 7.56 2.08 8.23 3.71
2-ion swap 0.88 0.43 1.16 1.80
2-swap 27.93 9.98 10.26 4.05

Next, we compare our algorithm for MinStructure against basin hopping where the
next structure to relax is chosen at random. Based on the results of our previous experiments,
we have chosen the Axes neighbourhood as an intermediate step before the relaxation. We
have run these algorithms 200 times for SrTiO3 with 15 atoms per unit cell, and 25 times
for SrTiO3 with 20 atoms per unit cell. We report how the energy varies with respect to
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Table 5 Evaluation of relaxation procedure after using a combinatorial neighborhood for Y2Ti2O7.
Time is in seconds and energy in electronvolts (eV). Results averaged over 1000 arragnements.

Neighbourhood Running time Time
stdev Energy drop Energy drop

stdev
Random structures-GULP 2.81 1.45 12.84 4.88
Axes-GULP 2.30 1.20 5.09 1.81
2-ion swap-GULP 2.47 2.25 12.29 4.38
2-swap-GULP 1.99 1.09 3.11 0.93

time until the best arrangement is found (Fig. 2) and we report other statistics that further
validate our approach (Table 6). As we can see, it is relatively easy to reach low levels of
energy and the majority of time is needed to find the absolute minimum. In addition, the
overhead posed by the use of the neighbourhood search divided by the time needed by the
basin hopping to find the global minimum decreases as the number of the atoms in the unit
cell increases.

Table 6 Statistics from the experiments depicted in Figure 2 (SrTiO3 with 15 atoms per unit
cell). The corresponding Figures for SrTiO3 with 20 atoms per unit cell can be found in the full
version of this paper [2].

Algorithm Number of
atoms

Total time
mean

Total time
stdev Relaxations Time for

relaxations
Time for

local search
Axes-GULP 15 227.89 287.21 13.24 126.26 101.63

20 2280.57 781.66 104.33 1016.72 1049.13
Basin hopping 15 167.89 114.89 18.14 160.79 −

20 5766.20 4748.33 450.66 4895.60 −

(a) Axes - GULP coarse. (b) Axes - GULP fine.

(c) GULP coarse. (d) GULP fine.

Figure 2 Time to reach specific energy levels for SrTiO3 (15 atoms). Figures (a) and (b)
correspond to the algorithm of Section 4. Figures (c) and (d) correspond to basin hopping. The
median times needed to reach every energy level are depicted in red on the top of each plot.

SEA 2020
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Figure 3 Performance of the Axes algorithm for Y2Ti2O7. The black points correspond to the
energy found after the relaxation of a point computed by the Axes neighborhood at each step. The
red line is the lower envelope of the energy found by our algorithm while the blue line corresponds
to the lower envelope of basin hopping.

In our last set of experiments, we compare our algorithm against basin hopping algorithm
for Y2Ti2O7 which contains 22 atoms in its primitive unit cell. In this set of experiments,
we produced 3500 random structures. We simulated basin hopping by sequentially relaxing
the constructed structures. However, none of the relaxations managed to find the optimal
configuration. Our algorithm, using the same order of structures as before, first used the
Axes neighborhood as an intermediate step followed by a relaxation; it managed to find the
optimal configuration after visiting only 720 structures (Fig. 3).

6 Conclusions

In this paper we have introduced and studied the Crystal Structure Prediction problem
through the lens of computer science. This is an important and very exciting problem
in computational chemistry, which computer scientists are not actively studying yet. We
have identified several open questions whose solution would have significant impact to the
discovery of new materials. These problems are challenging and several different techniques
and machineries from computer science could be applied for solving them. Our simple-to-
understand algorithms are a first step towards their solution. We hope that our algorithms
will be used as benchmarks in the future, since more sophisticated techniques for basin
hopping can be invented. For the energy computation via the depth approach, we conjecture
that the arrangement that minimizes the energy for k = 1 or k = 2, matches the arrangement
that minimizes the energy when it is computed via GULP. Our numerical simulations provide
significant evidence towards this. A formal result of this would greatly simplify the objective
function of the optimization problem and it would give more hope to faster methods for
relaxation. In addition, it could provide the foundations for new techniques for crystal
structure prediction. Our algorithm that utilizes the Axes neighborhood as an intermediate
step before relaxation, seems to speed up the time the standard basin hopping needs to find



D. Antypov et al. 21:13

the global minimum. Are there any other neighborhoods that outperform the Axes one?
Can local search, or Axes neighborhood in particular, improve existing methods for crystal
structure prediction by a simple integration as an intermediate step? We believe that this is
indeed the case.
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