Space and time tradeoffs for the k shortest simple paths problem

Ali Al Zoobi, David Coudert and Nicolas Nisse Université Côte d'Azur, Inria, CNRS, I3S

June 18, 2020

k shortest simple paths

Introduction

- k shortest simple paths problem
- k shortest simple paths algorithms :
 - Yen's algorithm
 - Kurz and Mutzel's algorithm

Our contribution:

- speeding up Kurz and Mutzel's algorithm
- space time tradeoff

Motivation

A shortest path is not enough!

- A shortest path may be affected
- Some constraints can be added
 - Bounded delay, cost ...
 - A user may prefer the coast road ...
- User likes diversity!

Give the user a set of 'good' choices

Motivation

Sometimes, it is hard to specify constraints that a path should satisfy

Applications:

- bioinformatics: biological sequence alignment
- natural language processing
- list decoding
- parsing
- network routing
- many more ...

Figure: aligning two DNA sequences

- (E

k shortest paths problem

Definition

Input:

- Directed weighted graph D = (V, A) with $w : A \rightarrow \mathbb{R}^+$,
- Two terminals s and t and an integer k

Output:

• k paths $P_1, P_2, ..., P_k$ from s to t such that $w(P_i) \leq w(P_{i+1})$, $1 \leq i < k$ and $w(P_k) \leq w(Q)$ for all other s-t paths Q

where $w(P) = \sum_{e \in A(P)} w(e)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

simple vs not simple

Figure: P is simple, Q is not simple

Definition (simple path)

a path is simple if and only if it has no repeated vertices

Al Zoobi, Coudert and Nisse

k shortest simple paths

June 18, 2020 6 / 22

Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

Al Zoobi, Coudert and Nisse

Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

Theorem (Yen '71)

The problem of finding k shortest simple paths can be solved in time $O(kn(m + n \log n))$

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

Theorem (Yen '71)

The problem of finding k shortest simple paths can be solved in time $O(kn(m + n \log n))$

Theorem (Williams and Williams '10)

All-Pairs-Shortest-Paths (APSP) $\prec_{(m,n)}$ 2-SSP ($\Leftrightarrow \tilde{O}(n.m)$ for 2-SSP)

Yen's algorithm (the algorithm)

Yen's idea:

• A second shortest simple path is a shortest simple deviation from a shortest path

Complexity:
$$O(kn (m + nlogn))$$

Complexity of finding one of

3

Image: A mathematical states and a mathem

э

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

3

3

3

3

3

3

3

3

3

3

3

3

3

э

3

3

3

3

3

3

3

3

Yen's algorithm (example)

3

A D N A B N A B N A B N

Algorithm engineering

- 9th DIMAC'S implementation challenge followed by a set of improvements
- Feng 2014 (speed up the computation of deviations)
- Kurz and Mutzel 2016 (larger memory consumption)

Algorithm	time (s)
Yen	80
Feng	30
Kurz and Mutzel	1.15

Table: COL network ($n \approx 500,000$; $m \approx 1,000,000$ and k = 300)

- We proposed two improvements of Kurz and Mutzel's algorithm
 - Up to twice faster with the same memory consumption
 - A time-space trade-off

Al Zoobi, Coudert and Nisse

k shortest simple paths

June 18, 2020 10 / 22

イロト イポト イヨト イヨト

Kurz and Mutzel's algorithm (a path representation)

An s-t path can be represented as a sequence of arcs and shortest path trees

Kurz and Mutzel's algorithm (a path representation)

 $P = \{s, v_3, v_1, v_2, v_3, v_4, v_2, t\}$ can be represented as $(T_0, e_1, T_0, e_2, T_1)$

Note: *P* is not simple

Figure: G

Kurz and Mutzel's algorithm (the algorithm)

Algorithm 1 Kurz - Mutzel(G, s, t, k)

- 1: $C \leftarrow \{(T_0)\} //$ where T_0 is a shortest path tree of G
- 2: while C is not empty do
- 3: $P \leftarrow extractMin(C)$
- 4: **if** *P* is simple **then**
- 5: add *P* to the output
- 6: add the extensions of P to C
- 7: **else**
- 8: **if** *P* can be "repaired" **then**
- 9: repair P into a simple path and add it to C

< □ > < □ > < □ > < □ > < □ > < □ >

Figure: G

Figure: the heap C

June 18, 2020 13 / 22

э

通 ト イ ヨ ト イ ヨ ト

Figure: G

Output: *s*, *v*₁, *v*₂, *t*

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

13/22

э

Figure: G

Figure: the heap C

Output: *s*, *v*₁, *v*₂, *t*

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Kurz and Mutzel's ('16) improvements

- Verify if a path is simple or not in a pivot step
- Using a Lazy Dijkstra (stop once the path is constructed)
- Split the heap C into two (C_{simple} and C_{not-simple})

٠

. . .

Our first improvement

Once a no simple path $P = (T_0, e_0, \dots, T_h, e_h, T_h)$ is extracted, the algorithm repair $P \implies C$ computing a new SP tree T'

- Remark: T' and T_h are "similar" and T_h is computed and stored
- Instead of computing T' from scratch
 - Compute T' starting from T_h

イロト イポト イヨト イヨト 二日

Our first improvement - evaluation

Figure: Rome ($n \approx 3000, m \approx 9000$ and k = 10,000)

Figure: COL ($n \approx 500, 000, m \approx 10^6$ and k = 1000)

Evaluation of the improvement on Dimac's routing networks

• A speed up by a factor of 1.5 to 2 on average

Publicly available: https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths

In practice, memory consumption is a BIG issue

- One shortest path tree of a graph of one million vertices needs $\approx 1 MB$
- For big values of k, a large number of shortest path trees should be stored
- One may use Feng's algorithm, but it is too slow.

Goal: space time tradeoff

Let $P = (s, v_1, \dots, v_i, \dots, t)$ be a path extracted from C, and let $E = \{e_1, \dots, e_{min}, \dots, e_p\}$ be the set of deviations tailing at P and leading to a no simple extension, with e_{min} the deviation with the smallest weight lower bound

Kurz-Mutzel's algorithm:

- May computes independently a new tree for each vertex with a deviation tailing at it
- Each tree remains in the memory till the end of the execution = 933Al Zoobi, Coudert and Nisse k shortest simple paths June 18, 2020 18/22

Remark : All these trees are "similar"

The improvement:

- Compute simultaneously the simple extensions at e_{min}, \dots, e_p
- Add them to C with their real cost as a key
- Add the extensions at e₁,..., e_{min-1} to C with the weight of the deviation at e_{min} as a key
- Only the tree of the extensions at emin is saved

Consequences:

- All of these no simple extension after *e_{min}* have a higher key in *C* and their extraction could be (hopefully) skipped
- Their corresponding trees are freed from the memory
- Unfortunately, some trees may be re-computed

Space-time trade off - evaluation

Evaluation of the improvement on the routing network of Rome $(n \approx 3000, m \approx 9000 \text{ and } k = 10,000)$

• A space reduction by a factor of 1.5 to 2 on average with a comparable running time

Al Zoobi, Coudert and Nisse

k shortest simple paths

Space-time trade off - future work

The goal:

- A tree is stored in the memory if and only if it will be used during the execution of the algorithm
 - No trees re-computation
 - Less space consuming
- Remark: Only trees used for (relatively) shortest paths are re-used
 - Store a tree only if it is used to extend a path that is shorter than a threshold value
- Analyse other parameters (number of hops of paths, size of the input graph) in order to know which algorithm is better for each input

Questions ?

Al Zoobi, Coudert and Nisse

< □ > < □ > < □ > < □ > < □ > < □ >