Space and time tradeoffs for the k shortest simple paths problem

Ali AI Zoobi, David Coudert and Nicolas Nisse
Université Côte d'Azur, Inria, CNRS, I3S

June 18, 2020

(1) Introduction
(2) k shortest simple paths problem
(3) k shortest simple paths algorithms:

- Yen's algorithm
- Kurz and Mutzel's algorithm
(9) Our contribution:
- speeding up Kurz and Mutzel's algorithm
- space time tradeoff

Motivation

A shortest path is not enough!

- A shortest path may be affected
- Some constraints can be added
- Bounded delay, cost ...
- A user may prefer the coast road ...
- User likes diversity!

Give the user a set of 'good' choices

Motivation

Sometimes, it is hard to specify constraints that a path should satisfy

Applications:

- bioinformatics: biological sequence alignment
- natural language processing
- list decoding
- parsing
- network routing
- many more ...

Figure: aligning two DNA sequences

k shortest paths problem

Definition

Input:

- Directed weighted graph $D=(V, A)$ with $w: A \rightarrow \mathbb{R}^{+}$,
- Two terminals s and t and an integer k

Output:

- k paths $P_{1}, P_{2}, \ldots, P_{k}$ from s to t such that $w\left(P_{i}\right) \leqslant w\left(P_{i+1}\right)$, $1 \leqslant i<k$ and $w\left(P_{k}\right) \leqslant w(Q)$ for all other $s-t$ paths Q
where $w(P)=\sum_{e \in A(P)} w(e)$

simple vs not simple

Figure: P is simple, Q is not simple

Definition (simple path)
a path is simple if and only if it has no repeated vertices

Complexity of the problem

Theorem (Eppstein '97)
The problem of finding k shortest paths can be solved in time $O(m+n \log n+k)$

Complexity of the problem

Theorem (Eppstein '97)
The problem of finding k shortest paths can be solved in time $O(m+n \log n+k)$

Theorem (Yen '71)
The problem of finding k shortest simple paths can be solved in time $O(k n(m+n \log n))$

Complexity of the problem

Theorem (Eppstein '97)
The problem of finding k shortest paths can be solved in time $O(m+n \log n+k)$

Theorem (Yen '71)
The problem of finding k shortest simple paths can be solved in time $O(k n(m+n \log n))$

Theorem (Williams and Williams '10)
All-Pairs-Shortest-Paths $(A P S P)<_{(m, n)} 2-S S P(\Leftrightarrow \tilde{O}(n . m)$ for 2-SSP $)$

Yen's algorithm (the algorithm)

Yen's idea:

- A second shortest simple path is a shortest simple deviation from a shortest path

Complexity: $O(k n$
$(m+n \log n) \quad)$
Complexity of finding one SP

Yen's algorithm (example)

Algorithm engineering

- 9th DIMAC'S implementation challenge followed by a set of improvements
- Feng 2014 (speed up the computation of deviations)
- Kurz and Mutzel 2016 (larger memory consumption)

Algorithm	time (s)
Yen	80
Feng	30
Kurz and Mutzel	1.15

Table: COL network ($n \approx 500,000 ; m \approx 1,000,000$ and $k=300$)

- We proposed two improvements of Kurz and Mutzel's algorithm
- Up to twice faster with the same memory consumption
- A time-space trade-off

Kurz and Mutzel's algorithm (a path representation)

An s-t path can be represented as a sequence of arcs and shortest path trees

Figure: G

Kurz and Mutzel's algorithm (a path representation)

$P=\left\{s, v_{3}, v_{1}, v_{2}, v_{3}, v_{4}, v_{2}, t\right\}$ can be represented as $\left(T_{0}, e_{1}, T_{0}, e_{2}, T_{1}\right)$

Note: P is not simple

Figure: G

Figure: SP tree of $G: T_{0}$

Figure: SP tree of $G_{\equiv}\left\{S_{\overline{2}} v_{1}\right\}$

Kurz and Mutzel's algorithm (the algorithm)

Algorithm 1 Kurz - Mutzel(G, s,t,k)
1: $C \leftarrow\left\{\left(T_{0}\right)\right\} / /$ where T_{0} is a shortest path tree of G
2: while C is not empty do
3: $\quad P \leftarrow$ extractMin (C)
4: \quad if P is simple then
5: \quad add P to the output
6: \quad add the extensions of P to C
7: else
8: \quad if P can be "repaired" then
9: \quad repair P into a simple path and add it to C

Kurz and Mutzel's algorithm (example)

Figure: G
Figure: the heap C

Figure: T_{0}

Kurz and Mutzel's algorithm (example)

Figure: G

Figure: T_{0}

Kurz and Mutzel's algorithm (example)

Figure: G

Figure: T_{0}

Kurz and Mutzel's algorithm (example)

Figure: G

Figure: T_{0}

Figure: the heap C

Output: s, v_{1}, v_{2}, t $s, v_{3}, v_{1}, v_{2}, t$

Kurz and Mutzel's algorithm (example)

Figure: G

Figure: T_{1}

$\mathrm{w}=11$

Figure: the heap C

Output: s, v_{1}, v_{2}, t $s_{1}, v_{3}, v_{1}, v_{2}, t_{1} \equiv$

Kurz and Mutzel's ('16) improvements

- Verify if a path is simple or not in a pivot step
- Using a Lazy Dijkstra (stop once the path is constructed)
- Split the heap C into two ($C_{\text {simple }}$ and $C_{\text {not-simple }}$)

Our first improvement

Once a no simple path $P=\left(T_{0}, e_{0}, \cdots, T_{h}, e_{h}, T_{h}\right)$ is extracted, the algorithm repair $P\left(\Rightarrow\right.$ computing a new SP tree $\left.T^{\prime}\right)$

- Remark: T^{\prime} and T_{h} are "similar" and T_{h} is computed and stored
- Instead of computing T^{\prime} from scratch
- Compute T^{\prime} starting from T_{h}

Our first improvement - evaluation

Figure: Rome ($n \approx 3000, m \approx 9000$ and $k=10,000$)

Figure: $\mathrm{COL}\left(n \approx 500,000, m \approx 10^{6}\right.$ and $k=1000$)

Evaluation of the improvement on Dimac's routing networks

- A speed up by a factor of 1.5 to 2 on average

Publicly available: https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths

Space-time trade off

In practice, memory consumption is a BIG issue

- One shortest path tree of a graph of one million vertices needs $\approx 1 M B$
- For big values of k, a large number of shortest path trees should be stored
- One may use Feng's algorithm, but it is too slow.

Goal: space time tradeoff

Space-time trade off

Let $P=\left(s, v_{1}, \cdots, v_{i}, \cdots, t\right)$ be a path extracted from C, and let $E=\left\{e_{1}, \cdots, e_{\text {min }}, \cdots, e_{p}\right\}$ be the set of deviations tailing at P and leading to a no simple extension, with $e_{\min }$ the deviation with the smallest weight lower bound

Kurz-Mutzel's algorithm:

- May computes independently a new tree for each vertex with a deviation tailing at it
- Each tree remains in the memory till the end of the execution

Space-time trade off

Remark: All these trees are "similar"
The improvement:

- Compute simultaneously the simple extensions at $e_{\min }, \cdots, e_{p}$
- Add them to C with their real cost as a key
- Add the extensions at $e_{1}, \cdots, e_{m i n-1}$ to C with the weight of the deviation at $e_{\text {min }}$ as a key
- Only the tree of the extensions at $e_{\text {min }}$ is saved

Space-time trade off

Consequences:

- All of these no simple extension after $e_{\min }$ have a higher key in C and their extraction could be (hopefully) skipped
- Their corresponding trees are freed from the memory
- Unfortunately, some trees may be re-computed

Space-time trade off - evaluation

Figure: Running time

Figure: \# stored trees

Evaluation of the improvement on the routing network of Rome $(n \approx 3000, m \approx 9000$ and $k=10,000)$

- A space reduction by a factor of 1.5 to 2 on average with a comparable running time

Space-time trade off - future work

The goal:

- A tree is stored in the memory if and only if it will be used during the execution of the algorithm
- No trees re-computation
- Less space consuming
- Remark: Only trees used for (relatively) shortest paths are re-used
- Store a tree only if it is used to extend a path that is shorter than a threshold value
- Analyse other parameters (number of hops of paths, size of the input graph) in order to know which algorithm is better for each input

Questions ?

