Algorithm Engineering for High-Dimensional Similarity Search Problems

Martin Aumüller

IT University of Copenhagen
Roadmap

01
Similarity Search in High-Dimensions: Setup/Experimental Approach

02
Survey of state-of-the-art Nearest Neighbor Search algorithms

03
Similarity Search on the GPU, in external memory, and in distributed settings
1. Similarity Search in High-Dimensions: Setup/Experimental Approach
k-Nearest Neighbor Problem

- **Preprocessing**: Build DS for set S of n data points
- **Task**: Given query point q, return k closest points to q in S
Nearest neighbor search on words

• GloVe: learning algorithm to find vector representations for words
• *GloVe.twitter* dataset: **1.2M words**, vectors trained from **2B tweets**, **100 dimensions**
• Semantically similar words: nearest neighbor search on vectors

https://nlp.stanford.edu/projects/glove/
GloVe Examples

$ grep -n "sicily" glove.twitter.27B.100d.txt
118340:sicily -0.43731 -1.1003 0.93183 0.13311 0.17207 ...

"sicily"
- sardinia
- tuscany
- dubrovnik
- liguria
- naples

"algorithm"
- algorithms
- optimization
- approximation
- iterative
- computation

"engineering"
- engineer
- accounting
- research
- science
- development
Basic Setup

• Data is described by **high-dimensional feature vectors**

• **Exact similarity search is difficult** in high dimensions

• data structures and algorithms suffer

 • **exponential dependence** on dimensionality

 • **in time, space, or both**
Why is Exact NN difficult?

• Choose n random points from $N(0, 1/d)^d$, for large d

• Choose a random query point

• nearest and furthest neighbor basically at same distance
Performance on GloVe

Recall-Queries per second (1/s) tradeoff - up and to the right is better

10^10 queries
Difficulty measure for queries

• Given query q and distances r_1, \ldots, r_k to k nearest neighbors, define

$$D(q) = -\left(\frac{1}{k} \sum \ln \frac{r_i}{r_k}\right)^{-1}$$

Based on the concept of local intrinsic dimensionality [Houle, 2013] and its MLE estimator [Amsaleg et al., 2015]
LID Distribution

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Data Points</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT [9]</td>
<td>1 000 000</td>
<td>128</td>
</tr>
<tr>
<td>MNIST</td>
<td>65 000</td>
<td>784</td>
</tr>
<tr>
<td>Fashion-MNIST [19]</td>
<td>65 000</td>
<td>784</td>
</tr>
<tr>
<td>GLOVE [17]</td>
<td>1 183 514</td>
<td>100</td>
</tr>
<tr>
<td>GLOVE-2M [17]</td>
<td>2 196 018</td>
<td>300</td>
</tr>
<tr>
<td>GNEWS [16]</td>
<td>3 000 000</td>
<td>300</td>
</tr>
</tbody>
</table>
Results (GloVe, 10-NN, 1.2M points)

http://ann-benchmarks.com/sisap19/faiss-ivf.html
2. STATE-OF-THE-ART NEAREST NEIGHBOR SEARCH
General Pipeline

Index generates candidates

Brute-force search on candidates
Brute-force search

GloVe: 1.2 M points, inner product as distance measure

<table>
<thead>
<tr>
<th>p_1</th>
<th>p_2</th>
<th>$...$</th>
<th>p_n</th>
</tr>
</thead>
</table>

- 400 byte

```c
inline float dot_naive(const float* x, const float* y, int f) {
    float result = 0;
    for (int i = 0; i < f; i++) {
        result += x[i] * y[i];
    }
    return result;
}
```

Automatically SIMD vectorized with clang –O3: https://godbolt.org/z/TJX68s

- 100ms per scan
- 4.2 GB/s throughput
- CPU-bound
Manual vectorization (256 bit registers)

\[
x \quad \cdots \quad \cdots
\]
\[
y \quad \cdots \quad \cdots
\]
\[
0 \quad 0
\]

- Parallel multiply
- Parallel add to result register
- Horizontal sum and cast to float

- 25 ms per query
- 16 GB/s
- 16.5 GB/s single-thread max on my laptop
- Memory-bound

https://gist.github.com/maumueller/720d0f71664bef694bd56b2aeff80b17
Brute-force on bit vectors

• Another popular distance measure is Hamming distance
 • Number of positions in which two bit strings differ

• Can be nicely packed into 64-bit words
• Hamming distance of two words is just bitcount of the XOR

```
inline uint64_t distance(const uint64_t* x, const uint64_t* y, int f) {
    uint64_t res = 0;
    for (int i = 0; i < f; i++) {
        res += __builtin_popcountll(x[i] ^ y[i]);
    }
    return res;
}
```

• 1.3 ms per query (128 bits)
• 6 GB/s throughput
Sketching to avoid distance computations

- Distance computations on bit vectors faster than Euclidean distance/inner product
- Their number can be reduced by storing compact sketch representations

Can distance computation be avoided?

Set τ such that with probability at least $1 - \varepsilon$ we don’t disregard point that could be among NN.

Easy to analyze: Sum of Bernoulli trials of $\Pr(X = 1) = f(dist(q, x))$

Sketch representation

q

1011100101

x

0101101011

At least τ collisions?

Yes

No

compute $dist(q, x)$

skip

SimHash [Charikar, 2002]
1-BitMinHash [König-Li, 2010]

[Christiani, 2019]
General Pipeline

Index generates candidates

Brute-force search on candidates
PUFFINN

PARAMETERLESS AND UNIVERSALLY FAST FINDING OF NEAREST NEIGHBORS

[A., Christiani, Pagh, Vesterli, 2019]

https://github.com/puffinn/puffinn

Credit: Richard Bartz
How does it work?

Locality-Sensitive Hashing (LSH) [Indyk-Motwani, 1998]

A family \mathcal{H} of hash functions is **locality-sensitive**, if the collision probability of two points is decreasing with their distance to each other.

$h(p) = h_1(p) \circ h_2(p) \circ h_3(p) \in \{0,1\}^3$
Solving k-NN using LSH (with failure prob. δ)

Termination: If $(1 - p)^j \leq \delta$, report current top-k.

Not terminated? Decrease K!
The Data Structure

Theoretical
• **LSH Forest**: Each repetition is a Trie build from LSH hash values
 [Bawa et al., 2005]

Practical
• Store indices of data set points sorted by hash code
• “Traversing the Trie” by binary search
• use lookup table for first levels
Overall System Design

Hashing

- \(q \)
- \(h_1 \)
- \(h_2 \)
- \(\vdots \)
- \(h_L \)

 Filtering

- 1
- \(s_1(p_1) \)
- \(\cdots \)
- \(s_1(p_n) \)
- \(s_M(p_1) \)
- \(\cdots \)
- \(s_M(p_n) \)

- dist(\(s'(p), s'(q) \)) \leq \tau ?

- insert into buffer
- compute distance

 Accumulation

- top-\(k \)
- buffer

- update top-\(k \) if buffer is full
- deduplicate

- \(p_1 \)
- \(\cdots \)
- \(p_n \)

- \(S \)
Running time (Glove 100d, 1.2M, 10-NN)
A difficult (?) data set in \mathbb{R}^{3d}

n data points

\[x_1 = (0^d, y_1, z_1) \]
\[\vdots \]
\[x_{n-1} = (0^d, y_{n-1}, z_{n-1}) \]
\[x_n = (v, w, 0^d) \]

m query points

\[q_1 = (v, 0^d, r_1) \]
\[\vdots \]
\[q_m = (v, 0^d, r_m) \]

$y_i, z_i, v, w, r_i \sim \mathcal{N}^d \left(0, \frac{1}{2d} \right)$
Running time ("Difficult", 1M, 10-NN)
Graph-based Similarity Search
Building a Small World Graph
Refining a Small World Graph

Goal: Keep out-degree as small as possible (while maintaining “large-enough” in-degree)!

HNSW/ONNG: [Malkov et al., 2020], [Iwasaki et al., 2018]
Running time (Glove 100d, 1.2M, 10-NN)
Open Problems Nearest Neighbor Search

• Data-dependent LSH with guarantees?
• Theoretical sound Small-World Graphs?
• Multi-core implementations
 • Good? [Malkov et al., 2020]
• Alternative ways of sketching data?
3. Similarity Search on the GPU, in External Memory, and in Distributed Settings
Nearest Neighbors on the GPU: FAISS
[Johnson et al., 2017] https://github.com/facebookresearch/faiss

• GPU setting
 • Data structure is held in GPU memory
 • Queries come in batches of say 10,000 queries per time

• Results:
 • http://ann-benchmarks.com/sift-128-euclidean_10_euclidean-batch.html
FAISS/2

• Data structure
 • Run k-means with large number of centroids
 • Each data point is associated with closest centroid

• Query
 • Find \(L \) closest centroids
 • Return \(k \) closest points found in points associated with these centroids

Nearest Neighbors on the GPU: GGNN

[Groh et al., 2019]
Nearest Neighbors in External Memory
[Subramanya et al., 2019]

RAM

\[\hat{x}_1 \]

\[\vdots \]

\[\hat{x}_n \]

Compressed vectors (32 byte per vector)

Product Quantization

SSD

\[x_1 \]

\[\dotsc \]

\[x_n \]

Original vectors (~400 byte per vector)
Distributed Setting: Similarity Join

• Problem
 • given sets R and S of size n,
 • and similarity threshold λ, compute
 $R \bowtie_\lambda S = \{(x, y) \in R \times S \mid sim(x, y) \geq \lambda\}$

• Similarity measures
 • Jaccard similarity
 • Cosine similarity

• Naive: $O(n^2)$ distance computations
Map-Reduce-based Similarity Join

Single Core on Xeon E5-2630v2 (2.60 GHz)
Hadoop cluster (12 nodes, 24 HT per node)

Scalability! But at what COST? [McSherry et al., 2015]

[LIVEJ] PPJ 345
PJL 88.9
PJL 12.0
PJL 6.52
PJL 3.50
PJL 1.88
PJL 1.02
PJL

[NETFLIX] ALL 123
PJL 494
PJL 146
PJL 76.4
PJL 36.6
PJL 15.6
PJL 4.73
PJL 0.894
PJL

[ORKUT] PPJ 213
PJL 79.4
PJL 33.4
PJL 21.0
PJL 12.9
PJL 7.69
PJL 4.28
PJL 2.06
PJL

[LIVE] 313
VJ 285
VJ 278
VJ 254
VJ 243

[NETF] T
T 527
VJ 215
VJ 161
VJ

[ORKU] T 1592
MG 941
VJ 761
VJ 681
VJ

[Mann et al., 2016]
[Fier et al., 2018]
Solved almost-optimally in the MPC model

[Hu et al., 2019]

\[(x, h_i(x)) \]

\[(y, h_i(y)) \]

\[(x, y, h_i(x)) \]

\[(x, y) \]

\[R \]

\[S \]

Hash using LSH

Join on hash

Similarity at least \(\lambda \)?

Emit

\(O(n^2) \) local work for distance computations!
Another approach: DANNY

Implementation in Rust using timely dataflow

https://github.com/TimelyDataflow/timely-dataflow

LSH + Sketching, candidate verification locally
Results
Roadmap

01 Similarity Search in High-Dimensions: Setup/Experimental Approach

02 Survey of state-of-the-art Nearest Neighbor Search algorithms

03 Similarity Search on the GPU, in external memory, and in distributed settings
References

- [Christiani, 2019]: Fast locality-sensitive hashing frameworks for approximate near neighbor search
- [Houle, 2013]: Dimensionality, discriminability, density and distance distributions. ICDMW 2013.
- [Iwasaki, Miyazaki, 2018]: Optimization of Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data, https://arxiv.org/abs/1810.07355
- [Subramanya, Devvrit, Kadekodi, Krishnaswamy, Simhadri, 2019]: DiskANN: Fast accurate billion-point nearest neighbor search on a single node. NeurIPS 2019
Extra slides
PUFFINN: Fast Hash Function Evaluation

- **Main Bottleneck:** Computation of Hash Values
- Adapt the “pooling” technique of [Dahlgaard et al., 2017] and [Christiani, 2019]

\[K \cdot m \text{ independent hash functions from LSH family, } m \ll L. \]

Pick \(K \) hash functions in repetition \(j \) using universal hash functions in each column.

Analysis using Cantelli’s inequality → Requires different stopping criteria (factor 2 slowdown)