Zipping Segment Trees

SEA 2020 · 18.6.2020
Lukas Barth, Dorothea Wagner
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]

[1, 10) [5, 8) [6, 20) [15, 25)
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]

[1, 10) [5, 8) [6, 20) [15, 25)

Stabbing Query

Given a set of intervals \mathcal{M} and a point p, find all intervals $I \in \mathcal{M}$ with $p \in I$.
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]

\[[1, 10) \quad [5, 8) \quad [6, 20) \quad [15, 25) \]

\[1 \quad 5 \quad 6 \quad 8 \quad 10 \quad 15 \quad 20 \quad 25 \]
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees

[van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees

[van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees

[van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees

[1, 10) [5, 8) [6, 20) [15, 25)

[1] [5] [6 8) 10) [15 20) 25)

van Kreveld, Overmars, JACM 1993
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]

[1, 10) [5, 8) [6, 20) [15, 25)

7?
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]

"Weak Segment Tree Property"
Dynamic Segment Trees

van Kreveld, Overmars, JACM 1993
Dynamic Segment Trees [van Kreveld, Overmars, JACM 1993]

Balance!
Dynamic Segment Trees

van Kreveld & Overmars’ solution
- Use Red-Black Trees
- Repair annotations after rebalancing

Balance!
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]

Smaller than 2

Larger than 2
Zip Trees — Insertion

[Tarjan et al. WADS 2019.]
Zip Trees — Insertion

Tarjan et al. WADS 2019.
Zip Trees — Insertion

 TARJAN ET AL. WADS 2019.

 Smaller than 2

 Larger than 2

 1 5

 3
Zipping Segment Trees - Insertion
Zipping Segment Trees - Insertion

Challenge
Uphold
Weak Segment Tree Property
Zipping Segment Trees - Insertion

Challenge
Uphold
Weak Segment Tree Property
Zipping Segment Trees - Insertion

Challenge
Uphold
Weak Segment Tree Property
Zipping Segment Trees - Insertion

Challenge
Uphold Weak Segment Tree Property

Idea
Clear the “unzipped” path.
Zipping Segment Trees - Insertion

Challenge

Uphold Weak Segment Tree Property

Idea

Clear the “unzipped” path.
Zipping Segment Trees - Insertion

Challenge
- Uphold Weak Segment Tree Property

Idea
- Clear the “unzipped” path.
Zipping Segment Trees - Insertion

Challenge
Uphold
Weak Segment Tree Property

Idea
Clear the “unzipped” path.
Zipping Segment Trees - Insertion

Challenge
Uphold
Weak Segment Tree Property

Idea
Clear the “unzipped” path.
Zipping Segment Trees - Insertion

Challenge
Uphold Weak Segment Tree Property

Idea
Clear the “unzipped” path.
Zipping Segment Trees - Insertion

Challenge
Uphold Weak Segment Tree Property

Idea
Clear the “unzipped” path.

Correctness (Intuition)
Look at search paths along the cleared path.

Look at search paths along the cleared path.
Zipping Segment Trees - Deletion
What about search paths exiting to the right here?
Zipping Segment Trees - Deletion

What about search paths exiting to the right here?
Insertion Height

Main Idea

- We want to expect a balanced tree
- Insert node with prob. $\frac{1}{2}$ as leaf, with prob. $\frac{1}{4}$ at height 1, ...
Insertion Height

Main Idea
- We want to expect a balanced tree
- Insert node with prob. \(\frac{1}{2} \) as leaf, with prob. \(\frac{1}{4} \) at height 1, \ldots

“Random” Variant
- Flip a coin until hitting “heads”
Insertion Height

Main Idea
- We want to expect a balanced tree
- Insert node with prob. $\frac{1}{2}$ as leaf, with prob. $\frac{1}{4}$ at height 1, …

“Random” Variant
- Flip a coin until hitting “heads”

“Hashing” Variant
- Hash the node’s value (or its memory address, or …)
- Use the bits as a stream of coin flips
- Advantage: Don’t need to store the rank at the node!
Experimental Results

1. Create tree with \(n \) random intervals (\(x \) axis)
2. Insert \(k \) new random intervals
3. \(y \) axis: Time for step 2 divided by \(k \)

![Graph showing insertion times for different tree structures](image)

- Red-Black
- Weight-Balanced
- Zip (Hashing)
- Zip (Random)
Experimental Results

1. Create tree with n random intervals (x axis)
2. Insert k new random intervals
3. y axis: Time for step 2 divided by k

[B, Wagner. SEA 2020.]

Red-Black
Weight-Balanced
Zip (Hashing)
Zip (Random)

[B, Wagner. ALENEX 2020.]
Experimental Results

1. Create tree with \(n \) random intervals \((x \text{ axis})\)
2. Insert \(k \) new random intervals
3. \(y \text{ axis}: \text{Time for step 2 divided by } k \)

Graph:
- **Red-Black**
- **Weight-Balanced**
- **Zip (Hashing)**
- **Zip (Random)**

Axes:
- **x axis:** Tree Size \((\times 10^4)\)
- **y axis:** Time (\(\mu\text{s}\))
Experimental Results

1. Create tree with n random intervals (x axis)
2. Insert k new random intervals
3. y axis: Time for step 2 divided by k

- Red-Black
- Weight-Balanced
- Zip (Hashing)
- Zip (Random)

[B, Wagner. SEA 2020.]
Conclusion
Conclusion
Conclusion
Conclusion

- Most efficient choice for deletions and moves
Conclusion

- Most efficient choice for deletions and moves
- Next step: Tuning Zip Trees!