Fast and Stable Repartitioning of Road Networks

18th International Symposium on Experimental Algorithms

<u>Valentin Buchhold</u> Daniel Delling Dennis Schieferdecker Michael Wegner

June 18, 2020

Real-World Production Systems

observations:

- data changes continuously
- OpenStreetMap: several million changes each day
- partitioning from scratch is highly sensitive to small changes

August 2018 September 2018 change in vertices: 0.36 % are added, 0.21 % are removed

Stable Graph Repartitioning

input:

- old graph
- new graph obtained from old one by inserting and removing vertices and edges
- partition of old graph into disjoint cells of roughly equal size

problem:

- cut new graph into disjoint cells
- of roughly equal size bounded by U
- while minimizing number of cut edges
- and maximizing similarity to old partition

Stable Graph Repartitioning

input:

- old graph
- new graph obtained from old one by inserting and removing vertices and edges
- partition of old graph into disjoint cells of roughly equal size

problem:

- cut new graph into disjoint cells
- ightharpoonup of roughly equal size bounded by U
- while minimizing number of cut edges
- and maximizing similarity to old partition
- ⇒ we consider nested multilevel partitions

Related Work

road network partitioning:

- ► PUNCH (2011)
- ▶ Buffoon (2012)
- ► Inertial Flow (2015)
- ► FlowCutter (2018)
- ► InertialFlowCutter (2019)

Related Work

road network partitioning:

- ► PUNCH (2011)
- ► Buffoon (2012)
- ► Inertial Flow (2015)
- ► FlowCutter (2018)
- ► InertialFlowCutter (2019)

adaptive mesh repartitioning:

- scratch-remap repartitioners (1994, 1995, 1998, 2001)
- ▶ diffusion-based repartitioners (1997, 1997, 2001)
- ▶ unified repartitioning algorithm (2000)
- ⇒ new mesh obtained by splitting or merging vertices
- ⇒ most work considers a fixed topology mesh refinements handled as vertex weight increases

Our Approach to Graph Repartitioning

idea:

- start with previous partition
- incorporate new vertices (cell assignment)
- repair and reoptimize partition

Our Approach to Graph Repartitioning

idea:

- start with previous partition
- incorporate new vertices (cell assignment)
- repair and reoptimize partition

process levels in top-down fashion:

observations:

- ► some cells are too large
- ► some cells are very small

observations:

- some cells are too large
- ► some cells are very small

observations:

- some cells are too large
- some cells are very small

repair and reoptimize partition:

1. build graph whose vertices are the cells in the partition

observations:

- some cells are too large
- some cells are very small

repair and reoptimize partition:

1. build graph whose vertices are the cells in the partition

observations:

- some cells are too large
- some cells are very small

- 1. build graph whose vertices are the cells in the partition
- 2. unpack oversized cells

observations:

- some cells are too large
- some cells are very small

- 1. build graph whose vertices are the cells in the partition
- 2. unpack oversized cells
- 3. greedily merge pairs of adjacent vertices with combined size < *U*

observations:

- some cells are too large
- some cells are very small

- 1. build graph whose vertices are the cells in the partition
- 2. unpack oversized cells
- 3. greedily merge pairs of adjacent vertices with combined size $\leq U$
- 4. locally optimize boundary between pairs of adjacent cells

observations:

- some cells are too large
- some cells are very small

- 1. build graph whose vertices are the cells in the partition
- 2. unpack oversized cells
- 3. greedily merge pairs of adjacent vertices with combined size $\leq U$
- 4. locally optimize boundary between pairs of adjacent cells
- ⇒ greedy algorithm and local search are subroutines from PUNCH

simple unpacking:

simple unpacking:

neighbor unpacking:

simple unpacking:

neighbor unpacking:

partial unpacking:

⇒ simple unpacking yields good tradeoff between quality and similarity

Experimental Evaluation

OSM North America:

- ▶ 25 million vertices
- monthly snapshots
- ▶ change in vertices: 0.36 % are added, 0.21 % are removed

August 2018 from scratch

September 2018 repartitioned

September 2018 from scratch

Experimental Evaluation

OSM Europe:

- ▶ 31 million vertices
- yearly snapshots
- ▶ change in vertices: 7.12 % are modified

January 2018 from scratch

January 2019 repartitioned

January 2019 from scratch

Experimental Evaluation

			similarity [%]				
		cut	lowest level		highest level		
period	instance	[%]	repair	full	repair	full	speedup
mo	Australia	3.09	98.87	64.57	97.60	39.27	12.07
	N America	3.11	98.64	64.01	87.16	31.07	9.64
	Europe	3.24	98.35	62.70	94.70	50.73	9.35
yr	Australia	10.91	85.16	49.60	75.49	23.33	6.31
	N America	13.14	91.04	54.55	62.46	32.53	4.09
	Europe	12.83	90.41	52.98	73.64	46.03	7.48

Conclusion

summary:

- new repartitioning algorithm
- improves fraction of unchanged overlay vertices to more than 90 %
- accelerates network repartitioning by an order of magnitude
- ► cut size is only about 3 % higher

Conclusion

summary:

- new repartitioning algorithm
- improves fraction of unchanged overlay vertices to more than 90 %
- accelerates network repartitioning by an order of magnitude
- cut size is only about 3 % higher

future work:

- handle larger changes
- other classes of evolving networks

