
Fast and Stable Repartitioning of Road Networks
18th International Symposium on Experimental Algorithms

Valentin Buchhold Daniel Delling
Dennis Schieferdecker Michael Wegner

June 18, 2020



Partition-Based Route Planning



Partition-Based Route Planning



Partition-Based Route Planning



Partition-Based Route Planning

s

t



Partition-Based Route Planning

s

t



Real-World Production Systems

observations:
I data changes continuously
I OpenStreetMap: several million changes each day
I partitioning from scratch is highly sensitive to small changes

August 2018 September 2018
change in vertices: 0.36% are added, 0.21% are removed



Computing Alternative Routes

s

t



Computing Alternative Routes

s

t



Computing Alternative Routes

s

t



Computing Alternative Routes

s

t



Stable Graph Repartitioning

input:
I old graph
I new graph obtained from old one

by inserting and removing vertices and edges
I partition of old graph

into disjoint cells of roughly equal size

problem:
I cut new graph into disjoint cells
I of roughly equal size bounded by U
I while minimizing number of cut edges
I and maximizing similarity to old partition

⇒ we consider nested multilevel partitions



Stable Graph Repartitioning

input:
I old graph
I new graph obtained from old one

by inserting and removing vertices and edges
I partition of old graph

into disjoint cells of roughly equal size

problem:
I cut new graph into disjoint cells
I of roughly equal size bounded by U
I while minimizing number of cut edges
I and maximizing similarity to old partition

⇒ we consider nested multilevel partitions



Related Work

road network partitioning:
I PUNCH (2011)
I Buffoon (2012)
I Inertial Flow (2015)
I FlowCutter (2018)
I InertialFlowCutter (2019)

adaptive mesh repartitioning:
I scratch-remap repartitioners (1994, 1995, 1998, 2001)
I diffusion-based repartitioners (1997, 1997, 2001)
I unified repartitioning algorithm (2000)
⇒ new mesh obtained by splitting or merging vertices
⇒ most work considers a fixed topology

mesh refinements handled as vertex weight increases



Related Work

road network partitioning:
I PUNCH (2011)
I Buffoon (2012)
I Inertial Flow (2015)
I FlowCutter (2018)
I InertialFlowCutter (2019)

adaptive mesh repartitioning:
I scratch-remap repartitioners (1994, 1995, 1998, 2001)
I diffusion-based repartitioners (1997, 1997, 2001)
I unified repartitioning algorithm (2000)
⇒ new mesh obtained by splitting or merging vertices
⇒ most work considers a fixed topology

mesh refinements handled as vertex weight increases



Our Approach to Graph Repartitioning

idea:
I start with previous partition
I incorporate new vertices (cell assignment)
I repair and reoptimize partition

process levels in top-down fashion:

map partition
to new graph

reset tiny
components cell assignment repair and

reoptimization

descend
one level

[else][more levels]



Our Approach to Graph Repartitioning

idea:
I start with previous partition
I incorporate new vertices (cell assignment)
I repair and reoptimize partition

process levels in top-down fashion:

map partition
to new graph

reset tiny
components cell assignment repair and

reoptimization

descend
one level

[else][more levels]



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Cell Assignment
each new vertex chooses cell to which majority of its neighbors belong:



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition
2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U
4. locally optimize boundary between

pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:

1. build graph whose vertices are the
cells in the partition

2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U
4. locally optimize boundary between

pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition

2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U
4. locally optimize boundary between

pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition

2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U
4. locally optimize boundary between

pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition
2. unpack oversized cells

3. greedily merge pairs of adjacent
vertices with combined size ≤ U

4. locally optimize boundary between
pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition
2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U

4. locally optimize boundary between
pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition
2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U
4. locally optimize boundary between

pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Repair and Reoptimization

observations:
I some cells are too large
I some cells are very small

repair and reoptimize partition:
1. build graph whose vertices are the

cells in the partition
2. unpack oversized cells
3. greedily merge pairs of adjacent

vertices with combined size ≤ U
4. locally optimize boundary between

pairs of adjacent cells

⇒ greedy algorithm and local search
are subroutines from PUNCH



Cell Unpacking

simple unpacking:

neighbor unpacking: partial unpacking:

⇒ simple unpacking yields good tradeoff between quality and similarity



Cell Unpacking

simple unpacking: neighbor unpacking:

partial unpacking:

⇒ simple unpacking yields good tradeoff between quality and similarity



Cell Unpacking

simple unpacking: neighbor unpacking: partial unpacking:

⇒ simple unpacking yields good tradeoff between quality and similarity



Cell Unpacking

simple unpacking: neighbor unpacking: partial unpacking:

⇒ simple unpacking yields good tradeoff between quality and similarity



Experimental Evaluation

OSM North America:
I 25 million vertices
I monthly snapshots
I change in vertices: 0.36% are added, 0.21% are removed

August 2018
from scratch

September 2018
repartitioned

September 2018
from scratch



Experimental Evaluation

OSM Europe:
I 31 million vertices
I yearly snapshots
I change in vertices: 7.12% are modified

January 2018
from scratch

January 2019
repartitioned

January 2019
from scratch



Experimental Evaluation

similarity [%]
cut lowest level highest level

period instance [%] repair full repair full speedup
mo Australia 3.09 98.87 64.57 97.60 39.27 12.07

N America 3.11 98.64 64.01 87.16 31.07 9.64
Europe 3.24 98.35 62.70 94.70 50.73 9.35

yr Australia 10.91 85.16 49.60 75.49 23.33 6.31
N America 13.14 91.04 54.55 62.46 32.53 4.09
Europe 12.83 90.41 52.98 73.64 46.03 7.48



Conclusion

summary:
I new repartitioning algorithm
I improves fraction of unchanged

overlay vertices to more than 90%
I accelerates network repartitioning

by an order of magnitude
I cut size is only about 3% higher

future work:
I handle larger changes
I other classes of evolving networks



Conclusion

summary:
I new repartitioning algorithm
I improves fraction of unchanged

overlay vertices to more than 90%
I accelerates network repartitioning

by an order of magnitude
I cut size is only about 3% higher

future work:
I handle larger changes
I other classes of evolving networks


	Introduction
	Our Approach

