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Abstract
• Purpose

– Compress

zero-suppressed binary decision diagram (ZDD)

≒ labeled binary directed acyclic graph (DAG)

• Method

– Expand a tree compression algorithm to DAGs

• Result

– Theoretic: Exponentially smaller than input

– Experimental: Smaller than a related research

in almost all cases
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Preliminary

ZDD

DAG compression

Top tree compression



ZDD
• Zero-suppressed binary decision diagram

[Minato 93]

– Labeled binary directed acyclic graph

– Represents a family of sets

– Share equivalent subgraphs

• Terminology

– Branching nodes

⁎ Label

⁎ 0-edges and 1-edges

– Sink nodes

⁎ Top or bottom
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Tree compression methods
• Tree grammar

– Based on grammar compression for strings

[Charikar et al. 05]

– Traversing on compressed representations

require linear time to the size of grammar

[Busatto et al. 04,], [Lohrey et al. 13]

• Succinct data structures

– Labeled tree: LOUDS [Jacobson 89]

BP [Munro, Raman 01]

– Unlabeled tree: [Ferragina et al. 09]
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Tree compression
• Transform-based compression

– Shares equivalent sub structures

– DAG compression [Downey et al. 80]

⁎ Shares all equivalent subtrees

– Top DAG compression [Bille et al. 13]

⁎ Shares equivalent subcomponents
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DAG compression
• Compress labeled DAGs

– [Downey et al. 80]

– Share all equivalent subtrees
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Problem of DAG comp.
• Cannot compress substructures

that repeats vertically

• Example: 

Simple, but not compressed
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Top DAG compression
• Compress labeled DAGs [Bille et al. 13]

– Transform an input tree to top tree, and

compress the top tree by DAG compression
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Top DAG compression
• In comparison to DAG compression:

– [Best case] O(n / logσn) times smaller

– [Worst case] O(logσn) times larger

• Greedy construction [Bille et al. 13]

– #node = O(𝑛 log log𝜎 𝑛 /log𝜎 𝑛)

– Proof is in [Hübchle-Schneider and Raman 15]

• Optimal construction [Lohrey et al. 17], 

[Dudek, Gawrychowski 18]

– #node = O(𝑛/log𝜎 𝑛)

(information theoretic lowerbound)

(n: #node of the input tree, σ: #label)
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Top tree
• A binary tree 𝒯 that represents

the way to decompose the input tree T

– Each node of the top tree

corresponds to a cluster of T

– The root of the top tree

corresponds to whole T

– A cluster is an induced subgraph

of a set of connected edges

– Every cluster has at most 2 boundary nodes

– A cluster is made by 

horizontal or vertical merge of 2 clusters

that have the same node as a boundary node
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Top tree
• A binary tree 𝒯 that represents

the way to decompose the input tree T

– A cluster is an induced subgraph

of a set of connected edges

– Every cluster has at most 2 boundary nodes

2020
-06-16 18th Symposium on Experimental Algorithms 13

A cluster



Top tree
• Example: 
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Top tree
• Example: 
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Advantage of top DAG
• Top DAG compression

allows sharing the same substructure

that appear at different height

2020
-06-16 18th Symposium on Experimental Algorithms 16

DAG compression

𝑛 top DAG compression

log 𝑛

𝑛



Two types of merging
• Vertical merge: (a), (b)

• Horizontal merge: (c), (d), (e)
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Horizontal merge
• Merge two clusters 

that have the same node 

as their top boundary nodes
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Vertical merge
• Merge two clusters that have the same

node as their top and bottom boundary
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Top tree construction
• Top tree is not uniquely determined

from the input tree

• Greedy construction

– Repeat 1—3 until the tree T become 1 edge

– 1. Choose pairs of clusters that

can be horizontally merged as much as possible

– 2. Choose pairs of clusters that

can be vertically merged from remaining nodes

as much as possible

– 3. Merge the all pairs chosen at 1 and 2
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Greedy construction
• Example
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Greedy construction
• Example
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Greedy construction
• Example
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Greedy construction
• Example
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Greedy construction
• Example
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Greedy construction
• Example
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Greedy construction
• Example
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Complexity: Greedy method
• n: #node of an input tree, σ: #label
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Theorem
[Bille et al. 13]
The height of the top tree made by
greedy construction is O(log n)

Theorem
[Hübchle-Schneider, Raman 15]
The number of nodes of top DAG
obtained after DAG compression
to the top tree made by greedy
construction is O( (n log logσ n) / logσ n)



Operations on top DAG
• Following operations are in O(log n) time

– (x: x-th node in DFS, T(x): a subtree rooted by x)

– access(x): label of x

– parent(x): preorder of the parent of x

– depth(x): depth of x

– height(x): height of x

– size(x): number of nodes in T(x)

– firstchild(x): preorder of the first child of x

– nextsibling(x): preorder of the next sibling of x

– la(x, i): preorder of i-th ancestor of x

– nca(x, y): preorder of nearest common ancestor

of x and y
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Proposed method

Construction algorithm

Experiment
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Construction of top ZDD
• 1. Find a spanning tree from input ZDD

– The edges not included in the spanning tree

is called non tree edges

• 2. Transform the spanning tree

to a top tree by greedy construction

• 3. For each non tree edge,

store the edge at the nearest

common ancestor of the source

node and the destination node

(Edges point sink nodes are exception)

• 4. Share equivalent subtrees
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Example of construction
• Step 0. Input
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Example of construction
• Step 1. Find a spanning tree
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Example of construction
• Step 2. Construct a top tree
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Example of construction
• Step 3. Store non tree edges
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Example of construction
• Step 4. Share equivalent subtrees
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Theoretical results

• Examples
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Theorem
Edge traversal is O(log2 n) time

Theorem
Memory usage of top ZDD
is O(log n) in the best case



Experiment
• Compared data structures

– Top ZDD: memory usage (byte)

– DenseZDD: memory usage (byte)

⁎ Static ZDD using succinct data structure[Denzumi et al. 14]

– ZDD: (2n log n + n log σ) (n: #node, σ: #label) (byte)

• Data sets

– {S⊆ U | |S| ≤ B}, where |U| = A

– {S⊆ U | ∀e∈S, ∃f∈S s.t. |e – f| ≤ B}∪U, where U = {1, ..., A}

– 2U, where |U| = A

– Solutions of knapsack problems

– Sets of matching edges of graphs

– Frequent item sets
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Experimental results 1/6
• Data: For an underlying set U of size A,

{S⊆ U | |S| ≤ B}

• Top ZDDs are 2—20 times smaller

than DenseZDDs
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top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 = 100, 𝐵 = 50 3,823 9,544 9,882

𝐴 = 400, 𝐵 = 200 13,614 146,550 206,025

𝐴 = 1000, 𝐵 = 500 43,151 966,519 1,440,375

(bytes)



Experimental results 2/6
• Data: For an underlying set U of size A,

{S⊆ U | ∀e∈S, ∃f∈S s.t. |e – f| ≤ B}∪U

• Top ZDDs are 100—125 times

smaller than DenseZDDs
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top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 = 500, 𝐵 = 250 2,431 227,798 321,594

𝐴 = 1000, 𝐵 = 500 2,511 321,594 1,440,375

(bytes)



Experimental results 3/6
• Data: For an underlying set U of size A,

2U

• Top ZDDs are highly effective

because the inputs have simple structure
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top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 =1000 2,254 4,185 3,750

𝐴 = 50000 2,464 178,764 300,000

(bytes)



Experimental results 4/6
• Data: Solutions of knapsack problems

– wi∈ [1, W]: random weight (wi ≧ wi+1)，C: capacity

• Top ZDDs are better than DenseZDDs

2020
-06-16 18th Symposium on Experimental Algorithms 42

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 = 100,𝑊 = 1000,
𝐶 = 10000 1,658,494 1,730,401 2,444,405

𝐴 = 200,𝑊 = 100,
𝐶 = 5000 1,032,596 1,516,840 2,181,688

𝐴 = 1000,𝑊 = 100,
𝐶 = 1000 2,080,925 2,929,191 4,491,025

𝐴 = 5000,𝑊 = 100,
𝐶 = 200 1,135,613 1,740,841 2,884,279

𝐴 = 1000,𝑊 = 10,
𝐶 = 1000 1,382,933 2,618,970 3,990,350

𝐴 = 1000,𝑊 = 100,
𝐶 = 1000 565,500 656,728 1,056,907



Experimental results 5/6
• Data: Sets of matching edges of graphs

• Top ZDDs lose in one case,

but not 1.5 times bigger than DenseZDD
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top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

8 × 8 grid graph 12,196 16,150 18,014

Perfect graph
𝐾12

23,038 16,304 25,340

“Interroute” 30,780 39,831 50,144

(“Interroute” : a graph of real network
http://www.topology-zoo.org/dataset.html)

(bytes)



Experimental results 6/6
• Data: Frequent item sets (p: threshold)

• Not so big differences between

top ZDDs and DenseZDDs
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top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

“mushroom” 
(p = 0.001) 104,580 91,757 123,576

“retail”
(p = 0.00025) 59,854 65,219 62,766

T40I10D100K” 
(p = 0.005) 224,378 188,400 248,656

(bytes)

(Data are from http://fimi.uantwerpen.be/data/)

http://fimi.uantwerpen.be/data/


Conclusion
• Proposed compression method for ZDD

– Expand top tree compression

– Choose a spanning tree from an input ZDD

– Unlike DenseZDD, top ZDD does not separate

the spanning tree and non-tree edges

– Experiments showed efficiency of top ZDDs

• Future work

– Dynamic programming on top ZDDs

– Faster operations on top ZDDs

– Finding better spanning trees for compression

– Complexity of finding optimal spanning tree

– Applying proposed method for general DAGs
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