
Storing Set Families

More Compactly

with Top ZDDs

18th Symposium on Experimental Algorithms

June 16—18, 2020

K. Matsuda (The University of Tokyo)

S. Denzumi (The University of Tokyo)

K. Sadakane (The University of Tokyo)

Abstract
• Purpose

– Compress

zero-suppressed binary decision diagram (ZDD)

≒ labeled binary directed acyclic graph (DAG)

• Method

– Expand a tree compression algorithm to DAGs

• Result

– Theoretic: Exponentially smaller than input

– Experimental: Smaller than a related research

in almost all cases

2020
-06-16 18th Symposium on Experimental Algorithms 2

Contents
• Preliminary

– ZDD

– Tree compression algorithms

• Proposed data structure

– Construction algorithm

– Complexity analysis

• Experiment

• Conclusion
2020
-06-16 18th Symposium on Experimental Algorithms 3

Preliminary

ZDD

DAG compression

Top tree compression

ZDD
• Zero-suppressed binary decision diagram

[Minato 93]

– Labeled binary directed acyclic graph

– Represents a family of sets

– Share equivalent subgraphs

• Terminology

– Branching nodes

⁎ Label

⁎ 0-edges and 1-edges

– Sink nodes

⁎ Top or bottom

2020
-06-16 18th Symposium on Experimental Algorithms 5

⊥ ⊤

1
0 1

0 2
1

3
0 1

{ {1, 2},

{1, 3}, {2, 3} }

2 1

0

Tree compression methods
• Tree grammar

– Based on grammar compression for strings

[Charikar et al. 05]

– Traversing on compressed representations

require linear time to the size of grammar

[Busatto et al. 04,], [Lohrey et al. 13]

• Succinct data structures

– Labeled tree: LOUDS [Jacobson 89]

BP [Munro, Raman 01]

– Unlabeled tree: [Ferragina et al. 09]

2020
-06-16 18th Symposium on Experimental Algorithms 6

Tree compression
• Transform-based compression

– Shares equivalent sub structures

– DAG compression [Downey et al. 80]

⁎ Shares all equivalent subtrees

– Top DAG compression [Bille et al. 13]

⁎ Shares equivalent subcomponents

2020
-06-16 18th Symposium on Experimental Algorithms 7

DAG compression
• Compress labeled DAGs

– [Downey et al. 80]

– Share all equivalent subtrees

2020
-06-16 18th Symposium on Experimental Algorithms 8

DAG compression

Problem of DAG comp.
• Cannot compress substructures

that repeats vertically

• Example:

Simple, but not compressed
2020
-06-16 18th Symposium on Experimental Algorithms 9

DAG compression

𝑛

Top DAG compression
• Compress labeled DAGs [Bille et al. 13]

– Transform an input tree to top tree, and

compress the top tree by DAG compression

2020
-06-16 18th Symposium on Experimental Algorithms 10

Input tree

Top DAG compression
• In comparison to DAG compression:

– [Best case] O(n / logσn) times smaller

– [Worst case] O(logσn) times larger

• Greedy construction [Bille et al. 13]

– #node = O(𝑛 log log𝜎 𝑛 /log𝜎 𝑛)

– Proof is in [Hübchle-Schneider and Raman 15]

• Optimal construction [Lohrey et al. 17],

[Dudek, Gawrychowski 18]

– #node = O(𝑛/log𝜎 𝑛)

(information theoretic lowerbound)

(n: #node of the input tree, σ: #label)

2020
-06-16 18th Symposium on Experimental Algorithms 11

Top tree
• A binary tree 𝒯 that represents

the way to decompose the input tree T

– Each node of the top tree

corresponds to a cluster of T

– The root of the top tree

corresponds to whole T

– A cluster is an induced subgraph

of a set of connected edges

– Every cluster has at most 2 boundary nodes

– A cluster is made by

horizontal or vertical merge of 2 clusters

that have the same node as a boundary node

2020
-06-16 18th Symposium on Experimental Algorithms 12

Top tree
• A binary tree 𝒯 that represents

the way to decompose the input tree T

– A cluster is an induced subgraph

of a set of connected edges

– Every cluster has at most 2 boundary nodes

2020
-06-16 18th Symposium on Experimental Algorithms 13

A cluster

Top tree
• Example:

2020
-06-16 18th Symposium on Experimental Algorithms 14

1

2

3

4 5

7

6

Input tree 𝑇

H H H

V

V

top tree 𝒯

(c) (c) (e)

(b)

(b)

Top tree
• Example:

2020
-06-16 18th Symposium on Experimental Algorithms 15

1

2

3

4 5

7

6

H H H

V

V

top DAG 𝒯𝐷Input tree 𝑇

Advantage of top DAG
• Top DAG compression

allows sharing the same substructure

that appear at different height

2020
-06-16 18th Symposium on Experimental Algorithms 16

DAG compression

𝑛 top DAG compression

log 𝑛

𝑛

Two types of merging
• Vertical merge: (a), (b)

• Horizontal merge: (c), (d), (e)

2020
-06-16 18th Symposium on Experimental Algorithms 17

[Bille et al. 13]

Horizontal merge
• Merge two clusters

that have the same node

as their top boundary nodes

2020
-06-16 18th Symposium on Experimental Algorithms 18

H

A
B

top tree Corresponding
clusters

left right

(c)

A B

Example

Vertical merge
• Merge two clusters that have the same

node as their top and bottom boundary

2020
-06-16 18th Symposium on Experimental Algorithms 19

V

A
B

top tree

left right

(a)

Corresponding
clusters

A

B

Example

Top tree construction
• Top tree is not uniquely determined

from the input tree

• Greedy construction

– Repeat 1—3 until the tree T become 1 edge

– 1. Choose pairs of clusters that

can be horizontally merged as much as possible

– 2. Choose pairs of clusters that

can be vertically merged from remaining nodes

as much as possible

– 3. Merge the all pairs chosen at 1 and 2

2020
-06-16 18th Symposium on Experimental Algorithms 20

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 21

1

2

3

4 5

7

6

top tree 𝒯Tree 𝑇

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 22

1

2

3

4 5

7

6

Tree 𝑇

H H H

top tree 𝒯

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 23

1

2

3

4

Tree 𝑇

H H H

top tree 𝒯

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 24

1

2

3

4

Tree 𝑇

H H H

V

top tree 𝒯

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 25

1

2

4

Tree 𝑇

H H H

V

top tree 𝒯

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 26

1

2

4

Tree 𝑇

H H H

V

V

top tree 𝒯

Greedy construction
• Example

2020
-06-16 18th Symposium on Experimental Algorithms 27

1

4

Tree 𝑇

H H H

V

V

top tree 𝒯

Complexity: Greedy method
• n: #node of an input tree, σ: #label

2020
-06-16 18th Symposium on Experimental Algorithms 28

Theorem
[Bille et al. 13]
The height of the top tree made by
greedy construction is O(log n)

Theorem
[Hübchle-Schneider, Raman 15]
The number of nodes of top DAG
obtained after DAG compression
to the top tree made by greedy
construction is O((n log logσ n) / logσ n)

Operations on top DAG
• Following operations are in O(log n) time

– (x: x-th node in DFS, T(x): a subtree rooted by x)

– access(x): label of x

– parent(x): preorder of the parent of x

– depth(x): depth of x

– height(x): height of x

– size(x): number of nodes in T(x)

– firstchild(x): preorder of the first child of x

– nextsibling(x): preorder of the next sibling of x

– la(x, i): preorder of i-th ancestor of x

– nca(x, y): preorder of nearest common ancestor

of x and y

2020
-06-16 18th Symposium on Experimental Algorithms 29

Proposed method

Construction algorithm

Experiment

Top ZDD

Construction of top ZDD
• 1. Find a spanning tree from input ZDD

– The edges not included in the spanning tree

is called non tree edges

• 2. Transform the spanning tree

to a top tree by greedy construction

• 3. For each non tree edge,

store the edge at the nearest

common ancestor of the source

node and the destination node

(Edges point sink nodes are exception)

• 4. Share equivalent subtrees

2020
-06-16 18th Symposium on Experimental Algorithms 31

Example of construction
• Step 0. Input

2020
-06-16 18th Symposium on Experimental Algorithms 32

Original ZDD

⊥ ⊤

1

2

3

4

Example of construction
• Step 1. Find a spanning tree

2020
-06-16 18th Symposium on Experimental Algorithms 33

1

2

3

4 5

7

6

⊥ ⊤

1

2

3

4

Original ZDD

Example of construction
• Step 2. Construct a top tree

2020
-06-16 18th Symposium on Experimental Algorithms 34

1

2

3

4 5

7

6

⊥ ⊤

H H H

V

V
1

2

3

4

Original ZDD

Example of construction
• Step 3. Store non tree edges

2020
-06-16 18th Symposium on Experimental Algorithms 35

1

2

3

4 5

7

6

⊥ ⊤

H H H

V

V
1

2

3

4

Original ZDD

Example of construction
• Step 4. Share equivalent subtrees

2020
-06-16 18th Symposium on Experimental Algorithms 36

1

2

3

4 5

7

6

⊥ ⊤

H H

V

V
1

2

3

4

Original ZDD

Theoretical results

• Examples

2020
-06-16 18th Symposium on Experimental Algorithms 37

Theorem
Edge traversal is O(log2 n) time

Theorem
Memory usage of top ZDD
is O(log n) in the best case

Experiment
• Compared data structures

– Top ZDD: memory usage (byte)

– DenseZDD: memory usage (byte)

⁎ Static ZDD using succinct data structure[Denzumi et al. 14]

– ZDD: (2n log n + n log σ) (n: #node, σ: #label) (byte)

• Data sets

– {S⊆ U | |S| ≤ B}, where |U| = A

– {S⊆ U | ∀e∈S, ∃f∈S s.t. |e – f| ≤ B}∪U, where U = {1, ..., A}

– 2U, where |U| = A

– Solutions of knapsack problems

– Sets of matching edges of graphs

– Frequent item sets

2020
-06-16 18th Symposium on Experimental Algorithms 38

Experimental results 1/6
• Data: For an underlying set U of size A,

{S⊆ U | |S| ≤ B}

• Top ZDDs are 2—20 times smaller

than DenseZDDs

2020
-06-16 18th Symposium on Experimental Algorithms 39

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 = 100, 𝐵 = 50 3,823 9,544 9,882

𝐴 = 400, 𝐵 = 200 13,614 146,550 206,025

𝐴 = 1000, 𝐵 = 500 43,151 966,519 1,440,375

(bytes)

Experimental results 2/6
• Data: For an underlying set U of size A,

{S⊆ U | ∀e∈S, ∃f∈S s.t. |e – f| ≤ B}∪U

• Top ZDDs are 100—125 times

smaller than DenseZDDs

2020
-06-16 18th Symposium on Experimental Algorithms 40

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 = 500, 𝐵 = 250 2,431 227,798 321,594

𝐴 = 1000, 𝐵 = 500 2,511 321,594 1,440,375

(bytes)

Experimental results 3/6
• Data: For an underlying set U of size A,

2U

• Top ZDDs are highly effective

because the inputs have simple structure

2020
-06-16 18th Symposium on Experimental Algorithms 41

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 =1000 2,254 4,185 3,750

𝐴 = 50000 2,464 178,764 300,000

(bytes)

Experimental results 4/6
• Data: Solutions of knapsack problems

– wi∈ [1, W]: random weight (wi ≧ wi+1)，C: capacity

• Top ZDDs are better than DenseZDDs

2020
-06-16 18th Symposium on Experimental Algorithms 42

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

𝐴 = 100,𝑊 = 1000,
𝐶 = 10000 1,658,494 1,730,401 2,444,405

𝐴 = 200,𝑊 = 100,
𝐶 = 5000 1,032,596 1,516,840 2,181,688

𝐴 = 1000,𝑊 = 100,
𝐶 = 1000 2,080,925 2,929,191 4,491,025

𝐴 = 5000,𝑊 = 100,
𝐶 = 200 1,135,613 1,740,841 2,884,279

𝐴 = 1000,𝑊 = 10,
𝐶 = 1000 1,382,933 2,618,970 3,990,350

𝐴 = 1000,𝑊 = 100,
𝐶 = 1000 565,500 656,728 1,056,907

Experimental results 5/6
• Data: Sets of matching edges of graphs

• Top ZDDs lose in one case,

but not 1.5 times bigger than DenseZDD
2020
-06-16 18th Symposium on Experimental Algorithms 43

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

8 × 8 grid graph 12,196 16,150 18,014

Perfect graph
𝐾12

23,038 16,304 25,340

“Interroute” 30,780 39,831 50,144

(“Interroute” : a graph of real network
http://www.topology-zoo.org/dataset.html)

(bytes)

Experimental results 6/6
• Data: Frequent item sets (p: threshold)

• Not so big differences between

top ZDDs and DenseZDDs
2020
-06-16 18th Symposium on Experimental Algorithms 44

top ZDD DenseZDD (2𝑛 log 𝑛 + 𝑛 log 𝑐)/8

“mushroom”
(p = 0.001) 104,580 91,757 123,576

“retail”
(p = 0.00025) 59,854 65,219 62,766

T40I10D100K”
(p = 0.005) 224,378 188,400 248,656

(bytes)

(Data are from http://fimi.uantwerpen.be/data/)

http://fimi.uantwerpen.be/data/

Conclusion
• Proposed compression method for ZDD

– Expand top tree compression

– Choose a spanning tree from an input ZDD

– Unlike DenseZDD, top ZDD does not separate

the spanning tree and non-tree edges

– Experiments showed efficiency of top ZDDs

• Future work

– Dynamic programming on top ZDDs

– Faster operations on top ZDDs

– Finding better spanning trees for compression

– Complexity of finding optimal spanning tree

– Applying proposed method for general DAGs

2020
-06-16 18th Symposium on Experimental Algorithms 45

Thank you
for listening!

