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ReachabilityAll-Pairs

a.k.a.

Transitive Closure

Fully Dynamic Transitive Closure

directed graph +
sequence of operations:

queries s ?; t
edge insertions & deletions
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THEORY

PRACTICE

TRANSITIVE CLOSURE

FULLY DYNAMIC

Query Update

m 1 static graph traversal

1 n2 [DI08, Rod08, San04]
√

n m
√

n [RZ08]

m0.43 m0.58n [RZ08]

n0.58 n1.58 [San04]

n1.495 n1.495 [San04]

n m + n log n [RZ16]

n1.407 n1.407 [vdBNS19]

& Times (in O) 2 Very Large Studies [FMNZ01, KZ08]

Distinctly fastest on most instances:
static graph traversal algorithms

Strongest competitors:
two SCC-maintaining algorithms

Few “real-world” graphs

Our Idea

Engineering algorithms that . . .
use single-source reachability

don’t maintain SCCs
profit from SCCs
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Supportive Vertices

Observations
Let v , s, t be vertices.

R+(v)/R−(v): vertices reachable from/that can reach v

Consider query s ?; t:
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v is a supportive vertex: R+(v)/R−(v) can help to answer s ?; t
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Supportive Vertices Algorithms
General Outline
I Store list of supportive vertices LSV
∀v ∈ LSV: maintain R+(v) and R−(v) via SSR; algorithms

I Updates (edge insertions & deletions):
forward to SSR algorithms

+ . . . ?

I Query:
∀v ∈ LSV: try to answer via (O1), (O2), (O3)
fallback to static graph traversal

single-source/
single-sink
reachability
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Supportive Vertices Algorithms

SV(k)
SVA(k, c)

with adjustments
SVC(z , c)

with SCC cover

compute SCCs {S0, . . . ,S`}
if |Si | ≥ z : pick supportive

vertex for Si as representative
map: vertex → representative

pick k vertices
as supportive vertices
uniformly at random

Initialization:

re-initialize every c updates
Updates:

lookup & use representatives
remove invalid entries

from map
fallback: mode of SV/SVA

try supportive vertices
in order of LSV

fallback: static graph traversal

Queries:
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Single-Source Reachability Subalgorithms

Extended Simple
Incremental Algorithm (SI)
Maintains reachability tree:
Insertions:

extend tree via BFS
Deletions:

reconstruct tree via
backward/forward BFS

Queries: O(1) time

s

v

Simplified Extended
Even-Shiloach Trees (SES)
Maintains BFS tree:
Insertions:

update BFS levels
Deletions:

simplified ES tree routine

Queries: O(1) time

s

v
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Experiments

All algorithms implemented in C++17 as part
of the open-source algorithms library Algora.

Algora

Code available publicly on Gitlab & Github: libAlgora
libAlgora

Algorithms
I BFS, DFS, DBFS (DFS-BFS hybrid)
I BiBFS (bidirectional BFS)
I SV with k = 1, k = 2, k = 3 ?

I SVA with k = 1 and c = 1k, c = 10k, c = 100k ?

I SVC with z = 25 or z = 50 and c = 10k, c = 100k ?

? Fallback: BiBFS; SSR algorithms: SES, SI [HHS20]
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Experiments: Instances

Random dynamic instances
ER graphs:

n = 100k and n = 10m, minit = d · n, d ∈ [1.25 . . . 50]
σ = 100k, different ratios of insertions/deletions/queries

Stochastic Kronecker graphs with random update sequences:
n ≈ 130k and n ≈ 30 . . . 130k, mavg = d · n, d = 0.7 . . . 16.5
σ± = 1.6m . . . 702m and σ± = 282k . . . 82m (updates only)

Real-world dynamic instances
. . . with real-world update sequences:

n = 100k . . . 2.2m, mavg = d · n, d = 5.4 . . . 7.8
σ± = 1.6m . . . 86.2m (updates only)

. . . with randomized update sequences:
n = 31k . . . 2.2m, mavg = d · n, d = 4.7 . . . 10.4
σ± = 1.4m . . . 76.4m (updates only)
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Experiments: Random Instances
n = σ = 100k, ρIDQ = 1 : 1 : 1
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Experiments: Random Instances
n = σ = 100k, ρIDQ = 1 : 1 : 2 | n = 10m, σ = 100k, ρIDQ = 1 : 1 : 1
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Experiments: Kronecker Instances
n ≈ 130k, σ± = 1.6m . . . 702m, ρUQ = 2 : 1
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Fastest: SV(1), SV(2), SVC(25,100k)

BFS, DFS, DBFS: > 6 h on ≥ 13/20 instances

similar picture for n ≈ 30 . . . 130k
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Experiments: Real-World Instances
n = 31k . . . 2.2m, σ± = 1.6m . . . 86.2m, ρUQ = 2 : 1
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BFS, DFS, DBFS: ≈ 6% in 24 h on DE instance

similar picture on set with randomized updates
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Conclusion

1
2 3

SV(1)

SV(2)
SVC(*,100k)

+ more stable query time

– doubled update time

+ more stable query time
+ fast on sparse instances
– – considerably increased

update time
?? recompute less often

Slower by several orders of magnitude: BFS, DFS, DBFS, BiBFS
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Thank you! – Questions?

Supportive Vertices

Observations
Let v , s, t be vertices.

R+(v)/R−(v): vertices reachable from/that can reach v

Consider query s ?; t:
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v is a supportive vertex: R+(v)/R−(v) can help to answer s ?; t
Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments: Random Instances
n = σ = 100k, ρIDQ = 1 : 1 : 1
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Conclusion

1
2 3

SV(1)

SV(2)
SVC(*,100k)

+ more stable query time

– doubled update time

+ more stable query time
+ fast on sparse instances
– – considerably increased

update time
?? recompute less often

Slower by several orders of magnitude: BFS, DFS, DBFS, BiBFS
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Dynamic instances
& source code:

https://dyreach.taa.univie.ac.at/
transitive-closure

Algora

libAlgora libAlgora
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