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Fully Dynamic Transitive Closure

I directed graph +
= grap

L— sequence of operations:
A ’

queries s ~ t
- edge insertions & deletions
-
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Query & Update Times (in O)

2 Very Large Studies [FMNZo1, KZ08]

m
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NG

m0.43
n0.58
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1.407

static graph traversal = Distinctly fastest on most instances:
[DI08, Rod08, San04] static graph traversal algorithms
[RZ08] .
> Strongest competitors:

[RZ08] S .

two SCC-maintaining algorithms
[San04]
[San04] @ > Few “real-world” graphs
[RZ16]
[vdBNS19]

PRACTICE

Engineering algorithms that . ..

Our Idea ¢’

= use single-source reachability
> don't maintain SCCs

.
- profit from SCCs

VE CLOSURE
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Supportive Vertices

Observations

Let v, s, t be vertices.

R*(v)/R~(v): vertices reachable from/that can reach v

?
Consider query s ~ t:

(01) (02) (03)

v is a supportive vertex: R™(v)/R~(v) can help to answer st
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Supportive Vertices Algorithms

General Outline

> Store list of supportive vertices Lsy
Vv € Lgy: maintain RT(v) and R~ (v) via SSR; algorithms

» Updates (edge insertions & deletions): single-source/
forward to SSR algorithms single-sink
> Query: reachability

Vv € Lsy: try to answer via (O1), (02), (03)
fallback to static graph traversal

(02)

©o1)

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice @Wigﬁﬁilﬁt




Supportive Vertices Algorithms

SVA(k, c
) : ( ,C) -SVC(Z, c)
with adjustments with SCC cover
Initialization:
. . te SCC
pick k vertices <.:ompu &9 s {50, "_SZ}
as supportive vertices if [Si| = z: pick supportive
uniformly at random vertex for S; as representative
map: vertex — representative
Updates:
re-initialize every ¢ updates
Queries:
try supportive vertices lookup & use representatives
in order of Lsy remove invalid entries
from map
fallback: static graph traversal fallback: mode of SV/SVA

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice @wigﬁrsil&i\



Single-Source Reachability Subalgorithms

Extended Simple Simplified Extended
Incremental Algorithm (SI) Even-Shiloach Trees (SES)
Maintains reachability tree: Maintains BFS tree:
Insertions: Insertions:
extend tree via BFS update BFS levels
Deletions: Deletions:
reconstruct tree via simplified ES tree routine
backward /forward BFS
Queries: O(1) time Queries: O(1) time
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Experiments

Al
All algorithms implemented in C++17 as part e eleoeten
of the open-source algorithms library Algora. I I
Code available publicly on Gitlab & Github: ¥ libAlgora
©) libAlgora

Algorithms

> BFS, DFS, DBFS (DFS—BFS hybrid)

BiBFS (bidirectional BFS)

SVwith k=1 k=2 k=3"*

SVA with k =1 and ¢ = 1k, ¢ = 10k, ¢ = 100k *

SVC with z =25 or z =50 and ¢ = 10k, ¢ = 100k *
* Fallback: BiBFS; SSR algorithms: SES, SI [HHS20]

>
>
>
>
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Experiments: Instances

Random dynamic instances

ER graphs:
n =100k and n = 10m, myyy =d - n, d € [1.25...50]
o = 100k, different ratios of insertions/deletions/queries
Stochastic Kronecker graphs with random update sequences:
n~ 130k and n~30...130k, mayg =d-n, d =0.7...16.5
ot =1.6m...702m and o4 = 282k...82m (updates only)

Real-world dynamic instances

... with real-world update sequences:
n=100k...2.2m, myyg =d-n, d=54...78
o4+ = 1.6m...86.2m (updates only)

... with randomized update sequences:
n=31k...2.2m, myyg=d-n, d=47...104
o4+ = 1.4m...76.4m (updates only)
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al update time (s)

Mean tot.
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Mean total operation time

Experiments: Random Instances
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Experiments: Random Instances
o =100k, ppg =1:1:2 \ n=10m, o = 100k, ppeg =1:1:1
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Experiments: Kronecker Instances
n~ 130k, o4 = 1.6m...702m, pyo =2:1

I sVC(25,100k) B SVC(25,10k) B SVA(1,100k) B8 SVA(1,10k) HE SV(2) BB SV(1) BB BiBFS ‘

9s

Timeout

22min

(30 min) . . :‘E" =
Bl cacxaa TN
25 [ | II -I (] st
answers bio-proteins blog-nat05-6m ca-dblp email-inside gnutella-25
Fastest: SV(1), SV(2), SVC(25,100k)
BFS, DFS, DBFS: > 6h on > 13/20 instances
similar picture for n ~ 30...130k
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Experiments: Real-World Instances
n=31k...2.2m, o4+ =1.6m...86.2m, pyg =2:1

[ svc(50,100k) B svC(50,10k) B SVA(1,100k) B SVA(1,10k) H Sv(2) B Sv(1) B BiBFS B DFS

Timeout
(24h) ~

Fastest: SV (1), SV(2)

BFS, DFS, DBFS: ~ 6% in 24 h on DE instance

similar picture on set with randomized updates
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Conclusion

4
o A

+ more stable query time + more stable query time
+ fast on sparse instances
— doubled update time — — considerably increased
update time

?? recompute less often

Slower by several orders of magnitude: BFS, DFS, DBFS, BiBFS

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice @ ivgsa




Thank you! — Questions?

Supportive Vertices Experiments: Random Instances
n=0=100k pog=1:1:1
Observations

Let v. s, t be vertices.

R*(v)/R(v): vertices reachable from/that can reach v

A

ity d

Consider query s - t:

Mo

(o1) (02) (03)
v is a supportive vertex: R*(v)/R™(v) can help to answer s - ¢ . Densit d
. Dynamic instances
Conclusion

A & source code:

. N A

https://dyreach.taa.univie.ac.at/
transitive-closure

+ more stable query time + more stable query time
+ fast on sparse instances
~ doubled update time ~ ~ considerably increased

update time Algora

7 recompute less often

[Slower by several orders of magnitude: BFS, DFS, DBFS, BiBFS | I I I u IibAIgora O IibAIgora
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