
Faster Fully Dynamic Transitive Closure
in Practice

Kathrin Hanauer Monika Henzinger Christian Schulz

June 17, 2020

kathrin.hanauer@univie.ac.at

mailto:kathrin.hanauer@univie.ac.at
mailto:kathrin.hanauer@univie.ac.at

ReachabilityAll-Pairs

a.k.a.

Transitive Closure

Fully Dynamic Transitive Closure

directed graph +
sequence of operations:

queries s ?; t
edge insertions & deletions

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

THEORY

PRACTICE

TRANSITIVE CLOSURE

FULLY DYNAMIC

Query Update

m 1 static graph traversal

1 n2 [DI08, Rod08, San04]
√

n m
√

n [RZ08]

m0.43 m0.58n [RZ08]

n0.58 n1.58 [San04]

n1.495 n1.495 [San04]

n m + n log n [RZ16]

n1.407 n1.407 [vdBNS19]

& Times (in O) 2 Very Large Studies [FMNZ01, KZ08]

Distinctly fastest on most instances:
static graph traversal algorithms

Strongest competitors:
two SCC-maintaining algorithms

Few “real-world” graphs

Our Idea

Engineering algorithms that . . .
use single-source reachability

don’t maintain SCCs
profit from SCCs

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Supportive Vertices

Observations
Let v , s, t be vertices.

R+(v)/R−(v): vertices reachable from/that can reach v

Consider query s ?; t:

v
R−(v)

R+(v)

s

t

v
R−(v)

R+(v)

s

t

(O1)

v
R−(v)

R+(v)s
t

v
R−(v)

R+(v)s
t

(O2)

v
R−(v)

R+(v)

t

s

v
R−(v)

R+(v)

t

s

(O3)

v is a supportive vertex: R+(v)/R−(v) can help to answer s ?; t
Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Supportive Vertices Algorithms
General Outline
I Store list of supportive vertices LSV
∀v ∈ LSV: maintain R+(v) and R−(v) via SSR; algorithms

I Updates (edge insertions & deletions):
forward to SSR algorithms

+ . . . ?

I Query:
∀v ∈ LSV: try to answer via (O1), (O2), (O3)
fallback to static graph traversal

single-source/
single-sink
reachability

v
R−(v)

R+(v)

s

t

(O1)

v
R−(v)

R+(v)s
t

(O2)

v
R−(v)

R+(v)

t

s

(O3)

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Supportive Vertices Algorithms

SV(k)
SVA(k, c)

with adjustments
SVC(z , c)

with SCC cover

compute SCCs {S0, . . . ,S`}
if |Si | ≥ z : pick supportive

vertex for Si as representative
map: vertex → representative

pick k vertices
as supportive vertices
uniformly at random

Initialization:

re-initialize every c updates
Updates:

lookup & use representatives
remove invalid entries

from map
fallback: mode of SV/SVA

try supportive vertices
in order of LSV

fallback: static graph traversal

Queries:

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Single-Source Reachability Subalgorithms

Extended Simple
Incremental Algorithm (SI)
Maintains reachability tree:
Insertions:

extend tree via BFS
Deletions:

reconstruct tree via
backward/forward BFS

Queries: O(1) time

s

v

Simplified Extended
Even-Shiloach Trees (SES)
Maintains BFS tree:
Insertions:

update BFS levels
Deletions:

simplified ES tree routine

Queries: O(1) time

s

v

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments

All algorithms implemented in C++17 as part
of the open-source algorithms library Algora.

Algora

Code available publicly on Gitlab & Github: libAlgora
libAlgora

Algorithms
I BFS, DFS, DBFS (DFS-BFS hybrid)
I BiBFS (bidirectional BFS)
I SV with k = 1, k = 2, k = 3 ?

I SVA with k = 1 and c = 1k, c = 10k, c = 100k ?

I SVC with z = 25 or z = 50 and c = 10k, c = 100k ?

? Fallback: BiBFS; SSR algorithms: SES, SI [HHS20]

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

https://gitlab.com/libAlgora
https://github.com/libAlgora

Experiments: Instances

Random dynamic instances
ER graphs:

n = 100k and n = 10m, minit = d · n, d ∈ [1.25 . . . 50]
σ = 100k, different ratios of insertions/deletions/queries

Stochastic Kronecker graphs with random update sequences:
n ≈ 130k and n ≈ 30 . . . 130k, mavg = d · n, d = 0.7 . . . 16.5
σ± = 1.6m . . . 702m and σ± = 282k . . . 82m (updates only)

Real-world dynamic instances
. . . with real-world update sequences:

n = 100k . . . 2.2m, mavg = d · n, d = 5.4 . . . 7.8
σ± = 1.6m . . . 86.2m (updates only)

. . . with randomized update sequences:
n = 31k . . . 2.2m, mavg = d · n, d = 4.7 . . . 10.4
σ± = 1.4m . . . 76.4m (updates only)

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments: Random Instances
n = σ = 100k, ρIDQ = 1 : 1 : 1

1.25 2.5 5 10 20 40

0.1

1

10

SV(1)
SVC(25,∞)

SV(2)

SV(3)

SVC(25,10k)

SVA(1,10k)

SVA(1,1k)

Density d

M
ea

n
to

ta
lu

pd
at

e
tim

e
(s

)

1.25 2.5 5 10 20 40

0.1

1

10

100

1 000

BiBFS

BFS

DFS/DBFS

SVC

SV(1)

SVA

Density d

M
ea

n
to

ta
lq

ue
ry

tim
e

(s
)

1.25 2.5 5 10 20 40
0.1

1

10

100

1 000

BiBFS

BFS

DFS/DBFS

SVC(25,∞)
SV(1)

SVA(1,1k)

SVA(1,10k)

SVC(25,10k)

SV(3)

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40
1

10

100

1 000

10 000

BiBFS

BFSDFS/DBFS

SVA(1,1k)

SVA(1,10k)

SVC(25,10k)
SV(3)

SV(1) SVC(25,∞)

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
25

,∞
)

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments: Random Instances
n = σ = 100k, ρIDQ = 1 : 1 : 2 | n = 10m, σ = 100k, ρIDQ = 1 : 1 : 1

1.25 2.5 5 10 20 40

0.1

1

10

SVA(1,1k)

BiBFS

SVA(1,10k)

SVC(25,10k)

SVC(25,∞)

SV(1)

SV(3)

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40

10

100

1 000

SVA(1,1k)

SVA(1,10k)

BiBFS

SVC(50,10k)

SV(3)
SVC(50,∞)

SV(1)

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40

1

10

100

SVA(1,1k)

BiBFS

SVA(1,10k)

SVC(25,10k)

SV(3)

SV(1)
SVC(25,∞)

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
25
,∞

)

1.25 2.5 5 10 20 40

1

10

100

BiBFS

SVA(1,1k)

SVA(1,10k)

SVC(25,10k)

SV(3)

SV(1)
SVC(25,∞)

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
50
,∞

)

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments: Kronecker Instances
n ≈ 130k, σ± = 1.6m . . . 702m, ρUQ = 2 : 1

Timeout
(30min)

answers bio-proteins blog-nat05-6m ca-dblp email-inside gnutella-25

23
s

5m
in

42
s 13

m
in

50
s

9m
in

19
s

2m
in

34
s

4m
in

11
s

5m
in

34
s

4m
in

41
s

14
m

in
30

s

1m
in

46
s

41
s 1m

in
45

s

2m
in

34
s

3m
in

12
s

24
m

in
3s

1m
in

46
s

53
s

7m
in

59
s

22
m

in
19

s

9m
in

25
s

2m
in

48
s

31
s 3m

in
32

s

6m
in

41
s

4m
in

12
s

1m
in

55
s

1m
in

4s

5m
in

5s

13
m

in
35

s

5m
in

32
s

2m
in

20
s

32
s

1m
in

26
s

2m
in

40
s

1m
in

46
s

1m
in

SVC(25, 100k) SVC(25, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS

Fastest: SV(1), SV(2), SVC(25,100k)

BFS, DFS, DBFS: > 6 h on ≥ 13/20 instances

similar picture for n ≈ 30 . . . 130k

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments: Real-World Instances
n = 31k . . . 2.2m, σ± = 1.6m . . . 86.2m, ρUQ = 2 : 1

Timeout
(24h)

DE FR IT NL PL SIM

2h
31

m
in

6h
54

m
in

4h
44

m
in

1h
43

m
in

50
m

in
22

s

1h
1m

in

31
s

4h
44

m
in

2h
1m

in

37
m

in
43

s

53
m

in
29

s

28
m

in
22

s

14
s

4h
25

m
in

3h
46

m
in

59
m

in
36

s

17
m

in
46

s

22
m

in
26

s

23
s

21
h

41
m

in

13
h

9m
in

4h
42

m
in

1h
42

m
in

2h
16

m
in

37
s

7h
40

m
in

6h
57

m
in

1h
47

m
in

42
m

in
41

s

51
m

in
14

s

24
s

15
h

41
m

in

8h
29

m
in

3h
30

m
in

1h
18

m
in

2h
10

m
in

30
s

5h
24

m
in

3h
24

m
in

1h
12

m
in

30
m

in
50

s

46
m

in
52

s

11
s

SVC(50, 100k) SVC(50, 10k) SVA(1, 100k) SVA(1, 10k) SV(2) SV(1) BiBFS DFS

Fastest: SV(1), SV(2)

BFS, DFS, DBFS: ≈ 6% in 24 h on DE instance

similar picture on set with randomized updates

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Conclusion

1
2 3

SV(1)

SV(2)
SVC(*,100k)

+ more stable query time

– doubled update time

+ more stable query time
+ fast on sparse instances
– – considerably increased

update time
?? recompute less often

Slower by several orders of magnitude: BFS, DFS, DBFS, BiBFS

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Thank you! – Questions?

Supportive Vertices

Observations
Let v , s, t be vertices.

R+(v)/R−(v): vertices reachable from/that can reach v

Consider query s ?; t:

v
R−(v)

R+(v)

s

t

v
R−(v)

R+(v)

s

t

(O1)

v
R−(v)

R+(v)s
t

v
R−(v)

R+(v)s
t

(O2)

v
R−(v)

R+(v)

t

s

v
R−(v)

R+(v)

t

s

(O3)

v is a supportive vertex: R+(v)/R−(v) can help to answer s ?; t
Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Experiments: Random Instances
n = σ = 100k, ρIDQ = 1 : 1 : 1

1.25 2.5 5 10 20 40

0.1

1

10

SV(1)
SVC(25,∞)

SV(2)

SV(3)

SVC(25,10k)

SVA(1,10k)

SVA(1,1k)

Density d

M
ea

n
to

ta
lu

pd
at

e
tim

e
(s

)

1.25 2.5 5 10 20 40

0.1

1

10

100

1 000

BiBFS

BFS

DFS/DBFS

SVC

SV(1)

SVA

Density d

M
ea

n
to

ta
lq

ue
ry

tim
e

(s
)

1.25 2.5 5 10 20 40
0.1

1

10

100

1 000

BiBFS

BFS

DFS/DBFS

SVC(25,∞)
SV(1)

SVA(1,1k)

SVA(1,10k)

SVC(25,10k)

SV(3)

Density d

M
ea

n
to

ta
lo

pe
ra

tio
n

tim
e

(s
)

1.25 2.5 5 10 20 40
1

10

100

1 000

10 000

BiBFS

BFSDFS/DBFS

SVA(1,1k)

SVA(1,10k)

SVC(25,10k)
SV(3)

SV(1) SVC(25,∞)

Density d

M
ea

n
op

er
at

io
n

tim
e,

re
la

tiv
e

to
SV

C(
25

,∞
)

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Conclusion

1
2 3

SV(1)

SV(2)
SVC(*,100k)

+ more stable query time

– doubled update time

+ more stable query time
+ fast on sparse instances
– – considerably increased

update time
?? recompute less often

Slower by several orders of magnitude: BFS, DFS, DBFS, BiBFS

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Dynamic instances
& source code:

https://dyreach.taa.univie.ac.at/
transitive-closure

Algora

libAlgora libAlgora

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

https://dyreach.taa.univie.ac.at/transitive-closure
https://dyreach.taa.univie.ac.at/transitive-closure
https://gitlab.com/libAlgora
https://github.com/libAlgora

Bibliography I

[DI08] C. Demetrescu and G. F. Italiano. Mantaining dynamic matrices for
fully dynamic transitive closure. Algorithmica, 51(4):387–427, 2008.

[FMNZ01] D. Frigioni, T. Miller, U. Nanni, and C. Zaroliagis. An experimental
study of dynamic algorithms for transitive closure. Journal of
Experimental Algorithmics (JEA), 6:9, 2001.

[HHS20] K. Hanauer, M. Henzinger, and C. Schulz. Fully dynamic
single-source reachability in practice: An experimental study. In
Proceedings of the Symposium on Algorithm Engineering and
Experiments, ALENEX 2020, Salt Lake City, UT, USA, January
5-6, 2020, pages 106–119, 2020.

[KZ08] I. Krommidas and C. D. Zaroliagis. An experimental study of
algorithms for fully dynamic transitive closure. ACM Journal of
Experimental Algorithmics, 12:1.6:1–1.6:22, 2008.

[Rod08] L. Roditty. A faster and simpler fully dynamic transitive closure.
ACM Trans. Algorithms, 4(1), March 2008.

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

Bibliography II

[RZ08] L. Roditty and U. Zwick. Improved dynamic reachability algorithms
for directed graphs. SIAM Journal on Computing,
37(5):1455–1471, 2008.

[RZ16] L. Roditty and U. Zwick. A fully dynamic reachability algorithm for
directed graphs with an almost linear update time. SIAM Journal
on Computing, 45(3):712–733, 2016.

[San04] P. Sankowski. Dynamic transitive closure via dynamic matrix
inverse. In 45th Symposium on Foundations of Computer Science
(FOCS), pages 509–517. IEEE, 2004.

[vdBNS19] J. van den Brand, D. Nanongkai, and T. Saranurak. Dynamic
matrix inverse: Improved algorithms and matching conditional
lower bounds. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 456–480, 2019.

Kathrin Hanauer Faster Fully Dynamic Transitive Closure in Practice

	Motivation
	SV Algorithms
	Experiments
	Conclusion
	Bibliography

