Path Query Data Structures in Practice

Meng He, Serikzhan Kazi

June 3, 2020

Dalhousie University

Introduction

Methods

Results

Discussion

Both theoretical and practical reasons:

- Proliferation of tree-structured data (think xml/json etc)
- Expected height of a tree is $\Theta(\sqrt{n})$
- Becoming first-class citizen in established domains such as e.g. RDBMS: see PostgreSQL's ltree module.
- graph databases

- Path Counting: return $|\{z \in P_{x,y} | \mathbf{w}(z) \in Q\}|$.
- Path Reporting: enumerate $\{z \in P_{x,y} | \mathbf{w}(z) \in Q\}$.
- Path Selection: return the k^{th} ($0 \le k < |P_{x,y}|$) weight in the sorted list of weights on $P_{x,y}$; k is given at query time. In the special case of $k = \lfloor |P_{x,y}|/2 \rfloor$, a path selection is a path median query.

Empirical studies:

(traditional) orthogonal range searching
navigation and queries in succinct trees
queries in weighted trees

Source	Space	Time
Patil et al. [PST12] He et al. [HMZ16]	$6n + n\lg \sigma + \mathscr{O}(n\lg \sigma)$ $n(2 + \lg \sigma) + \mathscr{O}(n\lg \sigma)$	$\mathscr{O}(\lg n \lg \sigma)$ $\mathscr{O}(\lg \sigma / \lg \lg n)$

	num nodes	diameter	σ	$\log \sigma$	H_0	Description
eu.mst.osm	27,024,535	109,251	121,270	16.89	9.52	An MST we constructed over map of Europe [Ope17]
eu.mst.dmcs	18,010,173	115,920	843,781	19.69	8.93	An MST we constructed over European road network [kit]
eu.emst.dem	50,000,000	175,518	5020	12.29	9.95	An Euclidean MST we con- structed over DEM of Eu- rope [srt]
mrs.emst.dem	30,000,000	164,482	29,367	14.84	13.23	An Euclidean MST we constructed over DEM of Mars [mar]

DEM – Digital Elevation Model; **Euclidean MST** – Euclidean Minimum Spanning Tree obtained using **CGAL**. Road networks are due to OpenStreetMap and KIT.

Introduction

Methods

Results

Discussion

Notation

	Symbol	Description								
pointer-based	nv nv ^L	Naïve data structure Naïve data structure, augmented with 𝒪(1) query- time <i>LCA</i> of [BFP ⁺ 05] A solution based on tree extraction [HMZ16] A non-succinct version of the wavelet tree- and heavy-path decomposition-based solution of [PST12]								
	\texttt{ext}^\dagger whp †									
t	nv ^c	Naïve data structure, using succinct data structures to represent the tree structure and weights								
	ext ^c	$3n \lg \sigma + e(n \lg \sigma)$ -bits-of-space scheme for tree ex- traction, with compressed bitmaps $3n \lg \sigma + e(n \lg \sigma)$ -bits-of-space scheme for tree ex- traction, with uncompressed bitmaps								
succin	ext^p									
	whp ^c	Succinct version of whp , with compressed bitmaps								
	whp ^p	Succinct version of whp , with uncompressed bitmaps								

The implemented data structures and the abbreviations used to refer to them.

Tree Extraction

0/1-Parents

Our implementation uses $3n \lg \sigma + \mathcal{O}(n \lg \sigma)$ bits, i.e. 3 times as much as optimal [HMZ16].

Heavy-Path Decomposition

6n + O(n)-bit encoding of tree topology and its heavy-path decomposition due to Patil et al. [PST12].

framework: sdsl-lite

- int_vector<>/bit_vector<>
- · rrr_vector<>
- b[alanced]p[arentheses]_support
- · rank/select
- wt_int<>
- ...

timing: google-benchmark

memory: malloc_count

testing: googletest

datasets preparation: utilities and libraries:

- gdal
- cgal
- osm2po

Introduction

Methods

Results

Discussion

Path Median and Path Counting

	Dataset	nv	$\mathtt{n}\mathtt{v}^\mathtt{L}$	\mathtt{ext}^\dagger	\texttt{whp}^\dagger	nvc	ext^c	ext^p	whp ^c	whp ^p	
median	eu.mst.osm eu.mst.dmcs eu.emst.dem mrs.emst.dem	658 566 710 472	475 412 436 298	4.22 5.16 4.44 4.93	6.10 6.28 5.10 4.53	7078 6556 9404 7018	85.3 84.6 106 124	51.1 54.8 81.9 97.0	111 120 96.7 88.3	51.2 54.7 54.9 49.5	
	eu.mst.osm eu.mst.dmcs eu.emst.dem mrs.emst.dem	238 204 338 232	140 121 195 174	6.88 7.31 5.97 5.25	18.4 19.7 11.5 8.40	3553 3300 4835 3614	247 253 215 206	167 178 168 164	139 142 105 91	56.9 57.3 55.9 49.3	large
counting	eu.mst.osm eu.mst.dmcs eu.emst.dem mrs.emst.dem	244 209 339 237	143 124 195 143	5.47 6.94 4.55 5.91	17.8 18.4 10.0 8.74	3555 3297 4840 3613	213 224 178 199	146 160 140 154	129 133 100 89.7	54.2 56.5 54.9 48.9	medium
	eu.mst.osm eu.mst.dmcs eu.emst.dem mrs.emst.dem	239 209 347 238	139 123 200 144	5.25 5.25 3.92 4.82	15.4 18.9 9.34 7.41	3551 3300 4832 3615	190 206 154 178	132 148 124 133	119 126 94.9 84.2	53.9 55.2 53.2 47.6	small

Average time to answer a query, from a fixed set of 10⁶ randomly generated path median and path counting queries, in microseconds. Path counting queries are given in large, medium, and small configurations.

Dataset	κ	nv	$\mathtt{n}\mathtt{v}^{\mathtt{L}}$	\mathtt{ext}^\dagger	\texttt{whp}^\dagger	nvc	ext^c	ext^p	whp^c	\mathtt{whp}^{p}	_
eu.mst.osm	9,840	356	256	184	70.7	3766		//////		//////	
eu.mst.dmcs	9,163	309	224	147	66.8	3485		//////		IIII.	ge
eu.emst.dem	14,211	389	241	140	77.5	4926	//////			/////	.ar
mrs.emst.dem	10,576	267	178	89.2	55.1	3668					-
eu.mst.osm	1,093	322	222	43.7	28.8	3706		//////	//////	//////	_
eu.mst.dmcs	1,090	277	196	34.0	29.7	3434	IIIII]]]]]]]		IIII:	iur
eu.emst.dem	1,464	354	206	32.1	20.1	4880	//////	/////	//////	/////	ed
mrs.emst.dem	1,392	250	151	22.1	15.6	3639					E
eu.mst.osm	182	311	212	13.8	19.0	3685	1965	485	795	226	
eu.mst.dmcs	236	271	193	13.2	21.0	3529	2518	632	1043	292	1
eu.emst.dem	215	353	203	10.2	12.7	4873	1276	378	590	205	ma
mrs.emst.dem	117	242	145	8.88	9.57	3632	881	278	475	162	51

Average time to answer a path reporting query, from a fixed set of 10⁶ randomly generated path reporting queries, in microseconds. The queries are given in **large**, **medium**, and **small** configurations. Average output size for each group is given in column *κ*.

	Dataset	nv	nv^L	\texttt{whp}^{\dagger}	ext^{\dagger}	nvc	ext ^c	ext ^p	whp ^c	whp ^p
_	eu.mst.osm	406.3	972.1	3801	5943	21.71	59.85	75.74	21.71	34.42
Ce	eu.mst.dmcs	406.4	974.0	4274	6768	34.46	82.16	106.0	29.69	48.77
spa	eu.emst.dem	394.1	988.5	3342	4613	19.64	45.41	59.15	19.64	31.66
0)	mrs.emst.dem	386.7	1005	3579	5383	17.35	51.71	66.02	17.35	28.80
ne	eu.mst.osm	491.0/1	987.9/5	3785/28	9586/47	21.71/1	295.0/23	295.0/23	1347/62	1347/61
÷.	eu.mst.dmcs	439.8/1	1002/4	4403/19	12382/37	29.69/1	399.7/18	399.7/18	1360/42	1360/42
ak/	eu.emst.dem	401.0/2	1021/10	3460/47	5286/67	19.64/1	287.6/32	287.6/32	1333/115	1333/115
peg	mrs.emst.dem	392.4/1	1016/5	3719/30	6027/46	17.35/1	269.3/22	269.3/22	1337/69	1337/69

(upper) Space occupancy of our data structures, in bits per node, when loaded into memory; (lower) peak memory usage (**m** in bits per node) during construction and construction time (t in seconds) shown as \mathbf{m}/t .

Comparison of ext and whp

From the full version:

Average time to answer a path median query, controlled for the number of segments in heavy-path decomposition, in microseconds. Random fixed query set of size 10⁶.

Overall Evaluation

Median queries for eu.emst.dem dataset Counting queries for eu.emst.dem dataset

Visualization of some of the entries in Section 3. Inner rectangle magnifies the mutual configuration of the succinct data structures whp^p, whp^c, ext^p, and ext^c. The succinct naïve structure nv^c is not shown.

- Succinct data structures for path queries are competitive with more traditional approaches that are optimized either for speed or storage¹
- whp is practical, overall average-case good choice
- When worst-case performance is important, ext should be preferred to whp

¹except, possibly, for reporting queries

Introduction

Methods

Results

Discussion

Wavelet tree search is launched **independently** over each of the heavy-path segments. But the segments themselves are **not independent** – a query node uniquely determines all the segments to be searched, and **whp** is "more powerful than needed" in that it does not take advantage of this. Out $3n \lg \sigma + o(n \lg \sigma)$ -bit representation is 3 times worse than the optimal [HMZ16]. While time- and space-optimal solution needs **non-trivial word-RAM structures** and **lookup tables**, is better – time- or space-wise – alternative to our approach possible? This is an **interesting open problem** in algorithm engineering.

We acknowledge **PTV https://www.ptvgroup.com/** for providing data of the European road graph.

Thank you!

References i

- Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin, Lowest common ancestors in trees and directed acyclic graphs, J. Algorithms 57 (2005), no. 2, 75–94.
- Meng He, J. Ian Munro, and Gelin Zhou, *Data structures for path queries*, ACM Trans. Algorithms **12** (2016), no. 4, 53:1–53:32.
- KIT roadgraphs, https: //i11www.iti.kit.edu/information/roadgraphs, Accessed: 07/12/2018.

References ii

MOLA Mars Orbiter Laser Altimeter data from NASA Mars Global Surveyor, https://planetarymaps.usgs.gov/mosaic/Mars_ MGS_MOLA_DEM_mosaic_global_463m.tif, Accessed: 10/01/2019.

OpenStreetMap contributors, Planet dump retrieved from https://planet.osm.org , https://www.openstreetmap.org, 2017.

Manish Patil, Rahul Shah, and Sharma V. Thankachan, Succinct representations of weighted trees supporting path queries, J. Discrete Algorithms 17 (2012), 103–108.

SRTM Shuttle Radar Topography Mission, http://srtm.csi.cgiar.org/srtmdata/, Accessed: 10/01/2019.