
Fast and Simple
Compact Hashing

via Bucketing

Dominik Köppl
Simon J. Puglisi
Rajeev Raman

K V
f

n

2

dynamic associative map

● K, V: sets
● f maps a dynamic subset of size n of K to V
● common representations of f

– search tree
– hash table

K V
map f

n

3

setting

● K = [1..|2ω|]
● V = [1..|V|]
● in case that ω ≤ 20

– use plain array to represent f
– space: lg |V|/8 MiB

● for larger ω not feasible
example:
|K| = 232

|V| = 232

K V
f

n

MiB = 10242

4

● setting :
– 32 bit keys
– 32 bit values
– randomly generated

● std: C++ STL hash table
「unordered_map」
– closed addressing
– n = 216 = 65536 : more

than 2 GiB RAM needed!

memory benchmark

5

closed addressing

8 : apple 5: lemon 7: kiwi

2: grapes 1: apple 3 : pear h(3) = 5

3: pear

1

2

3

4

5

buckets = linked listspointer array

h: hash function

6

array list

array:
● key and values

stored in a list
● ordered by insertion

time

7

array list

searching a key:
● O(n) time
● if we sort, insertion

becomes O(lg n)
amortized time

(not fast)

key value

2 grapes

8 apple

5 lemon

1 apple

7 kiwi

3 pearsearch 3

 n
。
。
。

answer

8

google sparse hash

google:
– open addressing
– grouped into

dynamic buckets
– a bit vector

addresses buckets

9

`

sparse hash table

8 : apple 7: lemon

2: kiwi 1: apple

3 : pear

h(3) = 4

1 1

2 0

3 1

4 0

5 1

6 1

buckets = arrays
bit vector

3: pear 2: kiwi 1: apple

1

10

compact hashing

Cleary '84:
● open addressing
● φ : K φ(K) bijection→

– φ(k) = (h(k), r(k))
– φ-1(h(k),r(k)) = k

● instead of k store r(k)

(may need less space than k)

11

compact hashing

1 2: kiwi

2 1: apple

3

4 3: apple

5

5 : lemon

φ(5) = (3,2)

2: lemon

φ-1(3,2)=5

h(k) (r(k), value)φ(k) = (h(k), r(k))

12

Cleary: linear probing

4 : pear

φ(4) = (3,1)

φ-1(5,1)= 8 ≠ 4

 collision

3

displacement
info

1 2: kiwi

2 1: apple

3

4 3: apple

5

2: lemon

1: pear

h(k) (r(k), value)φ(k) = (h(k), r(k))

as a plain array:
costs too much space!

13

displacement info

representations :
● Cleary '84: 2m bits
● Poyias+ '15:

– Elias γ code
– layered array

1 2 3 4 5 6

1 0 1 9 1120

010 1 010 0001010

000010101 0001100

m : image size of h
 = # cells in H

14

displacement info

representations :
● Cleary '84: 2m bits
● Poyias+ '15:

– Elias γ code
– layered array

1 2 3 4 5 6

1 0 1 9 11

4 bit integer array

hash
table

-1

displacement: 20

insert:
- key: 5
- value: 20

15

memory benchmark

● c: compact
– layered
– max. load factor 0.5

● not space efficient!

16

memory benchmark

● c+s: composition of
– compact with
– sparse

● competitive with
array

21

chain

● composition of
– closed addressing
– array

– compact

● most space efficient

(our contribution)

22

chain

● closed addressing
● buckets: instead of lists use two arrays

8 : apple 5: lemon 7: kiwi1
...

1
...

apple lemon kiwi

8 5 7

key bucket

value
bucketlike array

3 : pear
φ(3) = (1,2)

pear

2

compact

23

chain: space analysis

● a bucket costs O(ω) bits (pointer + length)
● want O(n lg n) bits

 ⇒ # buckets: O(n / ω)
● then m = n / ω (image size of h)
● r(k) uses ~ ω - lg(n /ω) = ω - lg n + lg ω bits

space for improvement!

r(k) of compact
●K = [1..2ω]
●n: #elements

24

improve space

● want n buckets such that m = n
● but each bucket costs O(ω) bits!
● idea: maintain buckets in a group

(similar to sparse)

25

chain → grp

● chain represents each bucket separately
● grp uses bit vector to mark bucket boundaries

8 : apple 5: lemon 7: kiwi1

2

3

...

2: grapes 1: apple

8 : apple 5: lemon 7: kiwi 2: grapes 1: apple

1 0 0 0 1 1 0 0

26

rehashing

chain
● if a bucket reaches

 O(ω) elements

grp
● if a group reaches

O(ω) elements
● group bit vector has

O(ω) bits,
● scan bit vector naively

we set this maximum bucket / group size to 255
in practice (length costs a byte)⇒

27

insertion time

chain
● bucket has

O(ω) elements

grp
● group has

O(ω) elements

 ⇒ O(ω) worst-case time
(assuming that we do not need to rehash)

28

query time

chain
● bucket has

O(ω) elements

 ⇒ O(ω) worst-case
time

grp
● bit vector has O(ω) bits

 ⇒ find respective bucket
in O(1) expected time
● bucket size is O(1)

expected

 ⇒ O(1) expected timeassume that Ω(ω) bits
fit into a machine word

29

theoretic space bounds

to store n keys from K = [1..2ω]

we need at least

30

theoretic space bounds

construction query

hash
table

space in bits time
expected
time

cleary (1+ε) B + O(n) O(1/ε3) exp. O(1/ε2)

elias (1+ε) B + O(n) O(1/ε) exp. O(1/ε)

layered
(1+ε) B +
O(n lglglglglg n)

O(1/ε) exp. O(1/ε)

chain B + O(n lg ω) O(ω) worst O(ω) worst

grp B + O(n) O(ω) worst O(1)

ε (0,1] constant∈

31

average space per element

● grp has the smallest space requirements
● cleary, chain, and elias are roughly equal
● google and layered are not as space economic

● max. load
factor = 0.95

● use sparse
layout

● 32 bit keys
● 8 bit values

32

construction time

elias is very slow omit it→

33

construction time

● google is fastest
● grp is always slower than chain
● cleary and layered are slow

34

query time

● grp is mostly slower than chain

● google is fastest. cleary and layered have spikes
(happening at high load factors)

35

experimental summary

construction query
hash table space time time
google bad fast fast

cleary good slow slow

elias good very slow very slow

layered average slow fast

chain good fast slow

grp best fast slow

but sometimes slower than grp at high loads

36

proposed two hash tables

● techniques are
combination of
– closed addressing
– bucketing [Askitis'09]
– compact hashing

[Cleary'84]
– bit vector like in

google's sparse table

● characteristics:
– no displacement info
– memory-efficient
– fast construction but
– slow query times

● current research:
– speed up queries with SIMD
– overflow table for averaging

the loads of the buckets

thank you for watching!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

