Fast and Simple Compact Hashing via Bucketing

Dominik Köppl Simon J. Puglisi Rajeev Raman

dynamic associative map

- K, V: sets
- f maps a dynamic subset of size n of K to V
- common representations of f
- search tree
- hash table

setting

- $K=[1 . .|2 \omega|]$
- V = [1..|V|]
- in case that $\omega \leq 20$
- use plain array to represent $f \quad \mathrm{MiB}=1024^{2}$
- space: $\lg |V| / 8$ MiB
- for larger ω not feasible

> example:

- $|K|=2^{32}$
- $|\mathrm{V}|=2^{32}$

memory benchmark

- setting :
- 32 bit keys
- 32 bit values
- randomly generated
- std: C++ STL hash table「unordered_map」
- closed addressing
- $n=216=65536$: more than 2 GiB RAM needed!

$\begin{array}{lllllll}11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$
elements [lg]

closed addressing

h: hash function

array list

array:

- key and values stored in a list
- ordered by insertion time

array list

searching a key:

- $\mathrm{O}(n)$ time
- if we sort, insertion becomes O(Ig n) amortized time (not fast)

search 3

google sparse hash

google:

- open addressing
- grouped into dynamic buckets
- a bit vector addresses buckets

sparse hash table

compact hashing

Cleary '84:

- open addressing
- $\varphi: K \rightarrow \varphi(\mathrm{~K})$ bijection
- $\varphi(k)=(h(k), r(k))$
- $\varphi^{-1}(h(k), r(k))=k$
- instead of k store $r(k)$
(may need less space than k)

compact hashing

Cleary: linear probing

displacement

as a plain array: costs too much space!

displacement info

representations:

- Cleary '84: $2 m$ bits
- Poyias+ '15:
- Elias y code
- layered array

m : image size of h
 = \# cells in H

displacement info

representations:

- Cleary '84: $2 m$ bits
displacement: 20
- Poyias+ '15:
- Elias y code
- layered array

memory benchmark

- c: compact
- layered
- max. load factor 0.5
- not space efficient!

memory benchmark

- c+s: composition of
- compact with
- sparse
- competitive with array

chain

- composition of
- closed addressing
- array
- compact
- most space efficient
(our contribution)

chain

- closed addressing
- buckets: instead of lists use two arrays

chain: space analysis

- a bucket costs $O(\omega)$ bits (pointer + length)
- want $O(n \lg n)$ bits
space for improvement!
\Rightarrow \# buckets: $\mathrm{O}(n / \omega)$
- then $m=n / \omega$ (image size of h)

- $r(k)$ uses $\sim \omega-\lg (n / \omega)=\omega-\lg n+\lg \omega$ bits
- $K=\left[1 . .2^{\omega}\right]$
r(k) of compact
- n : \#elements

improve space

- want n buckets such that $m=n$
- but each bucket costs $\mathrm{O}(\omega)$ bits!
- idea: maintain buckets in a group (similar to sparse)

chain \rightarrow grp

- chain represents each bucket separately
- grp uses bit vector to mark bucket boundaries

rehashing

chain

- if a bucket reaches
$O(\omega)$ elements
grp
- if a group reaches
$O(\omega)$ elements
- group bit vector has $O(\omega)$ bits,
- scan bit vector naively
we set this maximum bucket / group size to 255 in practice (\Rightarrow length costs a byte)

insertion time

chain

- bucket has
$O(\omega)$ elements
$\Rightarrow \mathrm{O}(\omega)$ worst-case time
(assuming that we do not need to rehash)

query time

chain

- bucket has
$O(\omega)$ elements $\Rightarrow \mathrm{O}(\omega)$ worst-case time

grp

- bit vector has O(w) bits
\Rightarrow find respective bucket in $O(1)$ expected time
- bucket size is $\mathrm{O}(1)$ expected
$\Rightarrow \mathrm{O}(1)$ expected time
assume that $\Omega(\omega)$ bits fit into a machine word

theoretic space bounds

to store n keys from $\mathrm{K}=\left[1 . .2^{\omega}\right]$
we need at least

$$
B:=\lg \binom{2^{\omega}}{n}=n \omega-n \lg n+O(n) \text { bits }
$$

theoretic space bounds

 $\varepsilon \in(0,1]$ constant| | construction | | query |
| :--- | :--- | :--- | :--- |
| hash
 table | space in bits | time | expected
 time |
| cleary | $(1+\varepsilon) B+\mathrm{O}(n)$ | $\mathrm{O}\left(1 / \varepsilon^{3}\right)$ exp. | $\mathrm{O}\left(1 / \varepsilon^{2}\right)$ |
| elias | $(1+\varepsilon) B+\mathrm{O}(n)$ | $\mathrm{O}(1 / \varepsilon)$ exp. | $\mathrm{O}(1 / \varepsilon)$ |
| layered | $(1+\varepsilon) B+$
 $O(n \lg \lg \lg \lg \mid g n)$ | $\mathrm{O}(1 / \varepsilon)$ exp. | $\mathrm{O}(1 / \varepsilon)$ |
| chain | $B+\mathrm{O}(n \lg \omega)$ | $\mathrm{O}(\omega)$ worst | $\mathrm{O}(\omega)$ worst |
| grp | $B+\mathrm{O}(n)$ | $\mathrm{O}(\omega)$ worst | $\mathrm{O}(1)$ |

average space per element

chain \longrightarrow
cleary \longrightarrow
elias \longrightarrow
google \longrightarrow
grp \longrightarrow
layered \longrightarrow

- max. load factor $=0.95$
- use sparse layout
- 32 bit keys
- 8 bit values

construction time

chain \longrightarrow
cleary \longrightarrow
elias \longrightarrow
google \longrightarrow
grp \longrightarrow
elias is very slow \rightarrow omit it

construction time

- google is fastest
- grp is always slower than chain
- cleary and layered are slow

query time

- grp is mostly slower than chain
- google is fastest. cleary and layered have spikes (happening at high load factors)

experimental summary

	construction		query
hash table	space	time	time
google	bad	fast	fast
cleary	good	slow	slow
elias	good	very slow	very slow
layered	average	slow	fast
chain	good	fast	slow
grp	best	fast	slow

but sometimes slower than grp at high loads

proposed two hash tables

- techniques are combination of
- closed addressing
- bucketing [Askitis'09]
- compact hashing [Cleary'84]
- bit vector like in google's sparse table
- characteristics:
- no displacement info
- memory-efficient
- fast construction but
- slow query times
- current research:
- speed up queries with SIMD
- overflow table for averaging the loads of the buckets

