Finding Structurally and Temporally Similar Trajectories in Graphs

Roberto Grossi¹ Andrea Marino² Shima Moghtasedi¹

¹Dipartimento di Informatica, Università di Pisa, Italy

²Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", Università di Firenze, Italy

SEA 2020

shima.moghtased@di.unipi.it

Trajectory Similarity

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 2 / 40

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

- 1. Modeling trajectories
- 2. Modeling similarity taking into account both time and space
- 3. Modeling query
- 4. Computing efficiently similarity

Part I

Modeling trajectories

shima.moghtased@di.unipi.it

Trajectory Similarity

▶ ▲ 클 ▶ 클 ∽ ९ ୯ SEA 2020 4 / 40

▲ @ ▶ < ∃ ▶ </p>

 ✓ Graph with location information
 ✓ Spatial-Temporal Trajectories

 ✓ Graph with location information
 ✓ Spatial-Temporal Trajectories

Image: A matrix

 ✓ Graph with location information
 ✓ Spatial-Temporal Trajectories

 ✓ Topology of the network with no spatial information
 ✓ Structural-Temporal Trajectories
 ✓ Low-dimensional indexing challenges
 ✓ Less overall size of data

 ✓ Graph with location information
 ✓ Spatial-Temporal Trajectories

 ✓ Topology of the network with no spatial information
 ✓ Structural-Temporal Trajectories
 ✓ Low-dimensional indexing challenges
 ✓ Less overall size of data

• • • • • • • • • • • • •

Trajectory: sequence of nodes on networks with no spatial information.

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

 $T_1 = \langle \rangle \\ T_2 = \langle \rangle$

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$\begin{split} t &= 0 \\ T_1 &= \langle (v_1, [0, 0]) \rangle \\ T_2 &= \langle (v_4, [0, 0]) \rangle \end{split}$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$\begin{split} t &= 1 \\ T_1 &= \langle (v_1, [0, 1]) \rangle \\ T_2 &= \langle (v_4, [0, 1]) \rangle \end{split}$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$\begin{split} t &= 2 \\ T_1 &= \langle (v_1, [0, 2]) \rangle \\ T_2 &= \langle (v_4, [0, 2]) \rangle \end{split}$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$\begin{split} t &= 3 \\ T_1 &= \langle (v_1, [0,3]) \rangle \\ T_2 &= \langle (v_4, [0,3]) \rangle \end{split}$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

shima.moghtased@di.unipi.it

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 5$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 5]) \rangle$$

$$T_2 = \langle (v_4, [0, 4]) (v_2, [5, 5]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 6$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 6]) \rangle$$

$$T_2 = \langle (v_4, [0, 4]) (v_2, [5, 6]) \rangle$$

shima.moghtased@di.unipi.it

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 7$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 7]) \rangle$$

$$T_2 = \langle (v_4, [0, 4])(v_2, [5, 7]) \rangle$$

shima.moghtased@di.unipi.it

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 8$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]) \rangle$$

$$T_2 = \langle (v_4, [0, 4]) (v_2, [5, 8]) \rangle$$

shima.moghtased@di.unipi.it

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 9$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 9]) \rangle$$

$$T_2 = \langle (v_4, [0, 4]) (v_2, [5, 8]) (v_5, [9, 9]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 10$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 10]) \rangle$$

$$T_2 = \langle (v_4, [0, 4]) (v_2, [5, 8]) (v_5, [9, 10]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 11$$

$$T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 11]) \rangle$$

$$T_2 = \langle (v_4, [0, 4])(v_2, [5, 8])(v_5, [9, 10])(v_1, [11, 11]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

t = 12 $T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 11]), (v_5, [12, 12]) \rangle$ $T_2 = \langle (v_4, [0, 4]) (v_2, [5, 8]) (v_5, [9, 10]) (v_1, [11, 12]) \rangle$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

t = 13 $T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 11]), (v_5, [12, 13]) \rangle$ $T_2 = \langle (v_4, [0, 4])(v_2, [5, 8])(v_5, [9, 10])(v_1, [11, 13]) \rangle$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

t = 14 $T_1 = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 11]), (v_5, [12, 14]) \rangle$ $T_2 = \langle (v_4, [0, 4])(v_2, [5, 8])(v_5, [9, 10])(v_1, [11, 14]) \rangle$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 15$$

$$T_{1} = \langle (v_{1}, [0, 3]), (v_{2}, [4, 4]), (v_{3}, [5, 8]), (v_{4}, [9, 11]), (v_{5}, [12, 14]), (v_{6}, [15, 15]) \rangle$$

$$T_{2} = \langle (v_{4}, [0, 4]) (v_{2}, [5, 8]) (v_{5}, [9, 10]) (v_{1}, [11, 15]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 16$$

$$T_{1} = \langle (v_{1}, [0, 3]), (v_{2}, [4, 4]), (v_{3}, [5, 8]), (v_{4}, [9, 11]), (v_{5}, [12, 14]), (v_{6}, [15, 16]) \rangle$$

$$T_{2} = \langle (v_{4}, [0, 4])(v_{2}, [5, 8])(v_{5}, [9, 10])(v_{1}, [11, 15])(v_{7}, [16, 16]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Let G = (V, E) is a connected and undirected graph We use the topology of the graph G to define a trajectory.

A trajectory (Timed walk) is a time-stamped sequence of nodes

$$t = 17$$

$$T_{1} = \langle (v_{1}, [0, 3]), (v_{2}, [4, 4]), (v_{3}, [5, 8]), (v_{4}, [9, 11]), (v_{5}, [12, 14]), (v_{6}, [15, 17]) \rangle$$

$$T_{2} = \langle (v_{4}, [0, 4])(v_{2}, [5, 8])(v_{5}, [9, 10])(v_{1}, [11, 15])(v_{7}, [16, 17]) \rangle$$

shima.moghtased@di.unipi.it

Trajectory Similarity

Part II

Modeling Similarity

shima.moghtased@di.unipi.it

Trajectory Similarity

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ SEA 2020 7 / 40

Image: A math the second se

Similarity Requirements

shima.moghtased@di.unipi.it

Trajectory Similarity

▶ ▲ 클 ▶ 클 ∽ ९ ୯ SEA 2020 8 / 40

(日) (周) (日) (日)

Similarity Measures

State-of-the-art	Temporal	Proximity	Properties	Input	Complexity time
Won et al. [WKBL09]	×	×	Jaccard similarity based	Two strings as trajectories	$O(\ell^2)$
Xia et al. [XWZ ⁺ 11]	~	×	Jaccard similarity based	Two strings as trajectories	$O(\ell^2)$
Hwang et al. [HKL06]	~	~	Pair to pair distance computation only at specific predefined points	Two trajectories with the same length, implicitly	Ο(ℓ)
Tiakas et al. [TPN+06]	~	~	Spatial and temporal distance computation in separate way (Liner combination)	Two trajectories with the same length	Ο(ℓ)
Shang et al. [SDZ ⁺ 14]	~	~	LCSS based Liner combination of spatial and temporal distance	Two trajectories	$O(\ell^2)$
Tiakas et al. [TR15]	~	~	Linear combination of spatial and temporal distance	A set of query points and a trajectory	$O(\ell^2)$

Network-based similarity measures for trajectories of ℓ nodes.

イロト イポト イヨト イヨト

Spatiotemporal function	References
$\sigma * \mathcal{D}_{s}(Q,T) + (1-\sigma) * \mathcal{D}_{t}(Q,T)$	[TPN ⁺ 06, SDZ ⁺ 14, SCW ⁺ 17, TR15]
$(\mathcal{D}_{s}(Q,T) + \sigma * \mathcal{D}_{t}(Q,T))/2$	[CBKK07]
$(\mathcal{D}_{s}(Q,T)/\sigma+1)*(\mathcal{D}_{t}(Q,T)+1)$	[CBKK07]
$\mathcal{D}_{s}(Q,T) * \mathcal{D}_{t}(Q,T)$	[XWZ ⁺ 11, SXW ⁺ 15]
$\sigma * \mathcal{D}_{s}(Q,T) + \mathcal{D}_{t}(Q,T)$	[HKL06]

Spatio-temporal similarity functions: the parameter σ controls the relative importance of the spatial and temporal similarities.

Spatiotemporal function	References
$\sigma * \mathcal{D}_{s}(Q,T) + (1-\sigma) * \mathcal{D}_{t}(Q,T)$	[TPN ⁺ 06, SDZ ⁺ 14, SCW ⁺ 17, TR15]
$(\mathcal{D}_{s}(Q,T) + \sigma * \mathcal{D}_{t}(Q,T))/2$	[CBKK07]
$(\mathcal{D}_{s}(Q,T)/\sigma+1)*(\mathcal{D}_{t}(Q,T)+1)$	[CBKK07]
$\mathcal{D}_{s}(Q,T) * \mathcal{D}_{t}(Q,T)$	[XWZ ⁺ 11, SXW ⁺ 15]
$\sigma * \mathcal{D}_{s}(Q,T) + \mathcal{D}_{t}(Q,T)$	[HKL06]

Spatio-temporal similarity functions: the parameter σ controls the relative importance of the spatial and temporal similarities.

|| Linear-time || Arbitrary Length || Proximity || Single Function ||

< □ > < □ > < □ > < □ > < □ > < □ >

Time Restricted Trajectory

Given a trajectory T and a time interval t = [s, e], the time restricted trajectory T[t] is the sequence of pairs $(u_i, t_i) \in T$ such that $t_i = [s_i, e_i]$ has overlap with t = [s, e] (i.e. $t_i \cap t \neq 0$).

 $T = \langle (v_1, [0, 3]), (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 11]), (v_5, [12, 14]) \rangle$ For time interval t = [4, 11], we have : $T[t] = \langle (v_2, [4, 4]), (v_3, [5, 8]), (v_4, [9, 11]) \rangle$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ○○○

The distance between a *node* v and a *trajectory* T within a *time interval* t:

Node-Trajectory distance

$$dist(v, T, t) = \frac{\min_{(u_i, t_i) \in T[t]} d(v, u_i)}{D_G}$$

A B M A B M

The distance between a node v and a trajectory T within a time interval t:

Node-Trajectory distance

$$dist(v, T, t) = \frac{\min_{(u_i, t_i) \in T[t]} d(v, u_i)}{D_G}$$

Trajectory-Trajectory Similarity

$$Sim(Q, T, t) = \frac{\sum_{(v_i, t_i) \in Q[t]} |t_i| \times e^{-dist(v_i, T, t_i)}}{|t|}$$

shima.moghtased@di.unipi.it

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Four random trajectories in a dataset of trajectories moving in Milan. The trajectory with the red color is a query. The green trajectory is the most similar one to the query.
Part III

Modeling Query

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 13 / 40

æ

イロト イポト イヨト イヨト

k-MsTraj Query

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 14 / 40

æ

イロト イヨト イヨト イヨト

NTrajl Indexing: Structural-Temporal Trajectories

Spatial Indexing

Variation of R-tree: [CSZ⁺10, TZX⁺11]

Temporal Indexing

Based on the B-tree: [LTCN13, PZO⁺10]

Neighborhood Trajectory Indexing (NTrajl)

< □ > < □ > < □ > < □ > < □ > < □ >

Projection Set

Given the set of trajectories \mathcal{T} , for each $v \in V$ we define the projection set:

 $\forall v \in V \ \forall T \in \mathcal{T} \rightarrow \\ S_v = \{(t,T) \mid (u,t) \in T \text{ and } u \in \{v\} \cup N(v) \text{ and } T \in \mathcal{T} \}$

$$\mathcal{T} = \{T_1, T_2, T_3\}$$

$$T_1 = \langle (v_1, [2, 4]), (v_2, [5, 9]), (v_4, [10, 12]), (v_2, [13, 15]) \rangle$$

$$T_2 = \langle (v_3, [1, 6]), (v_2, [7, 11]), (v_5, [12, 16]) \rangle$$

$$T_3 = \langle (v_2, [1, 3]), (v_4, [4, 7]), (v_5, [8, 13]), (v_5, [12, 16]) \rangle$$

- 4 同 6 4 日 6 4 日 6

NTrajl Structure

$S_{\nu_1} = \{([1,3], T_3), ([2,4], T_1), ([5,9], T_1), ([7,11], T_2), ([13,15], T_1), ([14,16], T_3)\}$

SEA 2020 17 / 40

э

(日) (同) (三) (三)

Input: Given a dataset T over the graph G, a query trajectory Q and time interval t. **Output**: k-MSTraj

イロン 不聞と 不同と 不同と

Input: Given a dataset T over the graph G, a query trajectory Q and time interval t. **Output**: k-MSTraj

▶ < ≧ ▶ ≧ ∽ ९ ୯ SEA 2020 18 / 40

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BaseLine

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 18 / 40

3

イロン 不聞と 不同と 不同と

BaseLine

SEA 2020 18 / 40

æ

イロト イヨト イヨト イヨト

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 18 / 40

æ

イロト イヨト イヨト イヨト

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 18 / 40

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\Gamma = \cup_{(v_i,t_i)\in Q} \Gamma_{(v_i,t_i)}$$

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 18 / 40

æ

イロト イヨト イヨト イヨト

BaseLine

Input: Given a dataset T over the graph G, a query trajectory Q and time interval t. **Output**: k-MSTraj

 $\frac{\left[\Gamma = \bigcup_{(v_i, t_i) \in Q} \Gamma_{(v_i, t_i)}\right]}{\text{For each trajectory } T \in \Gamma: \text{ computing } Sim(Q, T, t)}$

18 / 40

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

k-MsTraj: Approach

Shrinking approach

Idea

- ✓ Presenting a comprehensive representation of trajectories
- ✓ Reducing the number of shortest path distance computations
- ✓ Reducing query processing time

イロト イポト イヨト イヨト

19 / 40

Part IV

Efficiently Query Processing: Shrinking Technique

shima.moghtased@di.unipi.it

Trajectory Similarity

∃ ⊳ **SEA 2020** 20 / 40

э

Shrinking Technique

[ANFA15]

- ✓ Approximate solution for k-NN trajectories to the set of query points.
- ✓ Estimate all query node as the centroid of the convex hull of query points.

- 4 ∃ ▶

✓ Spatial domain.

SEA 2020 21 / 40

Shrinking Approach: Basic Idea

SEA 2020 22 / 40

æ

イロト イヨト イヨト イヨト

Shrinking Approach: Basic Idea

shima.moghtased@di.unipi.it

Trajectory Similarity

∃ → 22 / 40 **SEA 2020**

æ

- \checkmark G = (V, E), let V be a set of n vertices on G
- ✓ Center nodes: $C = \{c_1, c_2, ..., c_h\} \subset V$ | Most frequent nodes in V |
- ✓ A node $u \in V$ is in the group corresponding to a center $c_i \in C$ if $d(u, c_i) \le d(u, c_j)$ for each $c_j \in C$ with $i \neq j$

イロト イポト イヨト イヨト

- \checkmark G = (V, E), let V be a set of n vertices on G
- ✓ Center nodes: $C = \{c_1, c_2, ..., c_h\} \subset V$ | Most frequent nodes in V
- ✓ A node $u \in V$ is in the group corresponding to a center $c_i \in C$ if $d(u, c_i) \le d(u, c_j)$ for each $c_j \in C$ with $i \neq j$

Precomputing the shortest path distances in linear time

 $O(n^2)$ shortest path distance precomputations in [SDZ⁺14]

Shrunk Trajectory

Shrunk trajectory \hat{T} is shrink(T'), which recursively merges any pair $(c_i, t_i), (c_{i+1}, t_{i+1}) \in T'$ as $(c_i, t_i + t_{i+1})$ when $c_i = c_{i+1}$ and t_i, t_{i+1} are two consecutive time intervals. T' is trajectory T represented by $c_i \in C$.

 $\mathcal{T} = \langle (v_4, [0, 4]), (v_2, [5, 8]), (v_5, [9, 12]), (v_1, [13, 15]), (v_7, [16, 17]) \rangle$

24 / 40

イロト イポト イヨト イヨト

Shrunk Trajectory

Shrunk trajectory \hat{T} is shrink(T'), which recursively merges any pair $(c_i, t_i), (c_{i+1}, t_{i+1}) \in T'$ as $(c_i, t_i + t_{i+1})$ when $c_i = c_{i+1}$ and t_i, t_{i+1} are two consecutive time intervals. T' is trajectory T represented by $c_i \in C$.

 $T = \langle (v_4, [0, 4]), (v_2, [5, 8]), (v_5, [9, 12]), (v_1, [13, 15]), (v_7, [16, 17]) \rangle$ $T' = \langle (v_3, [0, 4]), (v_3, [5, 8]), (v_3, [9, 12]), (v_7, [13, 15]), (v_7, [16, 17]) \rangle$

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 24 / 40

Shrunk Trajectory

Shrunk trajectory \hat{T} is shrink(T'), which recursively merges any pair $(c_i, t_i), (c_{i+1}, t_{i+1}) \in T'$ as $(c_i, t_i + t_{i+1})$ when $c_i = c_{i+1}$ and t_i, t_{i+1} are two consecutive time intervals. T' is trajectory T represented by $c_i \in C$.

 $T = \langle (v_4, [0, 4]), (v_2, [5, 8]), (v_5, [9, 12]), (v_1, [13, 15]), (v_7, [16, 17]) \rangle$ $T' = \langle (v_3, [0, 4]), (v_3, [5, 8]), (v_3, [9, 12]), (v_7, [13, 15]), (v_7, [16, 17]) \rangle$ $shrink(T') = \hat{T} = \langle (v_3, [0, 12]), (v_7, [13, 17]) \rangle$

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 24 / 40

Given the set of trajectories \mathcal{T} , for each Voronoi center node $c \in \mathcal{C}$ we define the projection set:

 $\forall c \in \mathcal{C}; \forall T \in \mathcal{T} \rightarrow S_c = \{(t, T) \mid (v, t) \in T \text{ and } v \in g \text{ and } g.\mathcal{C} = c \text{ and } T \in \mathcal{T} \}$

 $\forall c \in \mathcal{C} \rightarrow IT_c$: an Interval tree storing $(t, T) \in S_c$

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 25 / 40

イロト イポト イヨト イヨト

Query Processing

For a query trajectory Q within time interval t,

First: Making shrunk trajectory of $Q[t] \rightarrow \hat{Q}[t]$

Second: By making use of VoNTrajl, for each $(c_i, t_i) \in \hat{Q}[t]$ find trajectories traversing the nodes belonging to the group with center c_i

within $t_i \rightarrow \left| \tilde{\Gamma} = \cup_{(c_i, t_i) \in \hat{Q}[t]} \Gamma_{(c_i, t_i)} \right|$

SHQ

For each $T \in \tilde{\Gamma}$:

(I) Compute $Sim(\hat{Q}, T, t)$, as an estimation of Sim(Q, T, t)

SHQT

For each $T \in \tilde{\Gamma}$:

(I) Making shrunk trajectory of $T \rightarrow (\hat{T})$ (II) Compute $Sim(\hat{Q}, \hat{T}, t)$, as an estimation of Sim(Q, T, t)

< □ > < □ > < □ > < □ > < □ > < □ >

SHQ
For each
$$T \in \tilde{\Gamma}$$
:
 $Sim(Q, T, t) \rightarrow Sim(\hat{Q}, T, t)$ SHQT
For each $T \in \tilde{\Gamma}$:
 $Sim(Q, T, t) \rightarrow Sim(\hat{Q}, T, t)$ $d(u, v)_{u \in T, v \in Q} \rightarrow d(u, c_j)_{u \in T, c_j \in \hat{Q}}$ $d(u, v)_{u \in T, v \in Q} \rightarrow d(c_i, c_j)_{c_i \in \hat{T}, c_j \in \hat{Q}}$ $d \rightarrow \bar{d}$ $d \rightarrow \tilde{d}$ Lemma $\tilde{d} \leq d \leq 3\bar{d}$

SEA 2020 27 / 40

■ のへで

・ロト ・四ト ・ヨト ・ヨト

SHQSHQTLemmaLemma
$$\bar{d} \le d \le 3\bar{d}$$
 $\tilde{d} \le 2\bar{d}$

SEA 2020 27 / 40

₹.

・ロト ・個ト ・ヨト ・ヨト

Experiments: Datasets

Dataset Name	#trajectories	#nodes	#edges	Diameter
Facebook Dataset	1000	4039	88234	8
Milan Dataset	16166	3000	130071	5
Rome Dataset	7755	473	10524	6

Summary of Datasets

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020

æ

28 / 40

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Q1: How fast is getting the answer for a query, i.e. how much is the query time?
- Q2: How fast is the preprocessing time?
- Q3: How good is the quality of the solution found if compared with the exact solution?

A B A A B A

- Q1: How fast is getting the answer for a query, i.e. how much is the query time?
- Q2: How fast is the preprocessing time?
- Q3: How good is the quality of the solution found if compared with the exact solution?

(日) (周) (日) (日)

Running Time: Q1

Datasets	BASE	SHQ	SHQT
Facebook	1.09	0.74	0.43
Milan	380.03	376.15	85.48
Rome	26.19	19.42	15.83

The average time for answering a query for each proposed method on each dataset

Datasets	BASE	SHQ	SHQT
Milan	9786.39	9968.98	9968.98
Rome	7504.37	6569.84	6569.84

The average number of trajectories in the candidate set in each method.

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Q1: How fast is getting the answer for a query, i.e. how much is the query time?
- Q2: How fast is the preprocessing time?
- Q3: How good is the quality of the solution found if compared with the exact solution?

(日) (周) (日) (日)

Dataset	NTrajl	VoTrajl	Distance precomputing	Shrinking trajectories and building Voronoi diagram
Facebook	185.19	0.51	0.48	0.62
Milan	1716.44	13.50	0.27	10.21
Rome	69.25	0.24	0.005	0.56

Preprocessing time (in sec.)

イロト イロト イヨト イヨト

- Q1: How fast is getting the answer for a query, i.e. how much is the query time?
- Q2: How fast is the preprocessing time?
- Q3: How good is the quality of the solution found if compared with the exact solution?

A B M A B M

Image: Image:

$\gamma_1 \rightarrow \text{Exact output set of k-MsTraj query}$

 $\gamma_2 \rightarrow$ Estimated output set of k-MsTraj query

$$SSR(\gamma_1, \gamma_2) = \frac{\sum_{T \in \gamma_1} Sim(Q, T, t)}{\sum_{S \in \gamma_2} Sim(Q, S, t)}$$
$$IR(\gamma_1, \gamma_2) = \frac{|\gamma_1 \cap \gamma_2|}{k}.$$

• • • • • • • • • • • • • •

IR Ratio

IR values show better performance for SHQT in comparison with SHQ.

æ
SSR Ratio

SSR values for both SHQ and SHQT are almost close to 1.

æ

★週▶ ★ 国▶ ★ 国▶

Conclusion

- $\checkmark\,$ SHQ and SHQT are effective w.r.t the BaseLine method.
- $\checkmark\,$ SHQT provides a fast solution with an acceptable precision.
- $\checkmark\,$ SHQ is more efficient, querying long trajectories
- $\checkmark\,$ SHQ is more efficient, facing with a set of long trajectories

References I

Mohammad Reza Abbasifard, Hassan Naderi, Zohreh Fallahnejad, and Omid Isfahani Alamdari, Approximate aggregate nearest neighbor search on moving objects trajectories, Journal of Central South University (2015).

Jae-Woo Chang, Rabindra Bista, Young-Chang Kim, and Yong-Ki Kim, Spatio-temporal similarity measure algorithm for moving objects on spatial networks, Springer, 2007.

Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, Yu Zheng, and Xing Xie, *Searching trajectories by locations: an efficiency study*, Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, ACM, 2010, pp. 255–266.

Jung-Rae Hwang, Hye-Young Kang, and Ki-Joune Li, *Searching for similar trajectories on road networks using spatio-temporal similarity*, East European Conference on Advances in Databases and Information Systems, Springer, 2006, pp. 282–295.

Wuman Luo, Haoyu Tan, Lei Chen, and Lionel M Ni, *Finding time period-based most frequent path in big trajectory data*, Proceedings of the 2013 ACM SIGMOD international conference on management of data, ACM, 2013.

Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, Dominique Barth, and Sandrine Vial, *Parinet: A tunable access method for in-network trajectories*, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), IEEE, 2010, pp. 177–188.

Shuo Shang, Lisi Chen, Zhewei Wei, Christian S Jensen, Kai Zheng, and Panos Kalnis, *Trajectory similarity join in spatial networks*, Proceedings of the VLDB Endowment (2017).

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

References II

Wenqiang Sha, Yingyuan Xiao, Hongya Wang, Yukun Li, and Xiaoye Wang, Searching for spatio-temporal similar trajectories on road networks using Network Voronoi Diagram, Springer, 2015.

Eleftherios Tiakas, Apostolos N Papadopoulos, Alexandros Nanopoulos, Yannis Manolopoulos, Dragan Stojanovic, and Slobodanka Djordjevic-Kajan, *Trajectory similarity search in spatial networks*, IEEE, 2006.

Eleftherios Tiakas and Dimitrios Rafailidis, Scalable trajectory similarity search based on locations in spatial networks, Model and Data Engineering, Springer, 2015, pp. 213–224.

Lu-An Tang, Yu Zheng, Xing Xie, Jing Yuan, Xiao Yu, and Jiawei Han, *Retrieving k-nearest neighboring trajectories by a set of point locations*, International Symposium on Spatial and Temporal Databases, Springer, 2011, pp. 223–241.

Jung-Im Won, Sang-Wook Kim, Ji-Haeng Baek, and Junghoon Lee, *Trajectory clustering in road network* environment, IEEE, 2009.

Ying Xia, Guo-Yin Wang, Xu Zhang, Gyoung-Bae Kim, and Hae-Young Bae, *Spatio-temporal similarity* measure for network constrained trajectory data, International Journal of Computational Intelligence Systems 4 (2011), no. 5, 1070–1079.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

shima.moghtased@di.unipi.it

Trajectory Similarity

SEA 2020 40 / 40