Enumerating All Subgraphs under Given Constraints Using Zero-suppressed Sentential Decision Diagrams

Yu Nakahata¹, Masaaki Nishino², Jun Kawahara¹, Shin-ichi Minato¹

¹Graduate School of Informatics, Kyoto University, Japan ²NTT Communication Science Laboratories, NTT Corporation, Japan

June 16, SEA 2020

Outline

- Introduction
 - Subgraph enumeration with decision diagrams
- Our target representation: ZSDDs
- Proposed algorithms
- Experiments and remarks

Subgraph enumeration

Input: A graph G Output: All specific subgraphs (e.g., paths and cycles) of G

- Important in many areas of computer science
- Output can be exponentially larger than the input size

ZDD (Zero-suppressed Binary Decision Diagram) [Minato, DAC '93]

- ZDDs are compact representations of set families
- ZDDs support several queries on set families
 - Counting, random sampling, Apply operations

Subgraph enumeration with ZDDs

- An (edge-induced) subgraph <=> its edge set
- A set of subgraphs <=> a familiy of edge sets
- => A ZDD can represent a set of subgraphs

Merit of subgraph enumeration with ZDDs

- A ZDD can represent a set of subgraphs compactly
- Applied for several graph-related problems

 (e.g., [Inoue et al., IEEE Trans. Smart Grid, '14], [Nakahata et al., SEA '18])

⁽Calculated by Graphillion*)

*https://github.com/takemaru/graphillion

Top-down construction of ZDDs

Input: A graph G Output: A **ZDD** representing a set of all specific subgraphs (e.g., paths and cycles) of G

Graph G

- Construct a ZDD directly without explicitly enumerating subgraphs
- The size of the output ZDD is bounded by the path-width of G

[Inoue and Minato, TCS-TR-A-16-80. Hokkaido University, '16]

s, t: vertex A, B, …, E: edge

Top-down construction algorithms for ZDDs

- General framework [Kawahara et al., IEICE Trans. '17] can deal with
 several fundamental constraints for subgraphs
- By combining the fundamental constraints, we can specify several types of subgraphs -> many applications

ZSDDs are compact representations of

(Zero-suppressed Sentential Decision Diagram) [Nishino et al., AAAI '16]

- set families and generalizations of ZDDs
- Merits of ZSDDs

ZSDD

- Theoretically, there exist set families that have poly-size ZSDD but exp-size ZDD
 [Bova et al., IJCAI '16]
- Several poly-time queries like ZDDs
 - Counting, random sampling, Apply operations
- Are ZSDDs are useful for subgraph enumeration?

(We explain how to read the figure later)

Subgraph enumeration with ZSDDs

- Existing method: Algorithms for matchings and paths [Nishino et al., AAAI '17]
 - General The sizes of output ZSDDs are bounded by the branchwidth of the input graph, which are smaller than bounds of ZDDs by the path-width
 - Section 2005 Secti
 - It seems difficult to extend the algorithms to other types of subgraphs

the number of edges degrees of vertices connectivity of vertices

Fundamental constraints for subgraphs used in ZDDs

Image: Second strain of the second str

Our contribution (1)

- We propose a novel framework of top-down construction algorithms for ZSDDs
- We apply our framework to the three fundamental constraints used in ZDDs: the number of edges, degrees, and connectivity
 - By combining these constraints, we can specify several types of subgraphs (e.g., paths, cycles, and spanning trees)
- To design an algorithm using our framework, one only has to show a recursive formula for the desired set of subgraphs
 -> makes theoretical analysis easier (e.g., correctness and complexity)

Our contribution (2)

- We show that the sizes of output ZSDDs are bounded by the branch-width of the input graph (not only for matchings and paths)
- Experimental results show that the proposed method can construct ZSDDs faster than the existing method for ZDDs and that the output ZSDDs are smaller than ZDDs
- Our method extends types of subgraphs that ZSDDs can be constructed

-> ZSDD can be applied for problems that ZDDs has been applied for

Outline

- Introduction
 - Subgraph enumeration with decision diagrams
- Our target representation: ZSDDs
- Proposed algorithms
- Experiments and remarks

 ZSDDs are obtained by recursively decomposing a set family into sub-families

$$\begin{array}{c} A, B, C, D \\ \swarrow \\ A, B \\ C, D \\ \end{array} \qquad \left\{ \{A, B\}, \{A, C\}, \{B, C\}, \{C, D\} \right\} \\ \hline \\ \left\{ \{A, B\}, \{A, C\}, \{B, C\}, \{C, D\} \right\} \\ \hline \\ \left\{ \{A, B\} \right\} \times \left\{ \{C, D\} \right\} \\ \left\{ \{A, B\} \right\} \times \left\{ \{C\} \right\} \\ \left\{ \{A, C\} \right\} \\ \left\{ \{B, C\} \right\} \\ \left\{ \{A, B\} \right\} \\ \left\{ \{A, B\} \right\} \\ \hline \\ \left\{ \{A, B\} \right$$

For set families f and g, $f \times g = \{a \cup b \mid a \in f, b \in g\}$

 ZSDDs are obtained by recursively decomposing a set family into sub-families

 ZSDDs are obtained by recursively decomposing a set family into sub-families

 ZSDDs are obtained by recursively decomposing a set family into sub-families

Vtree and ZSDD

- A ZSDD is obtained by recursively decomposing a set family into sub-families
- The order of decomposition is defined by a vtree

ZDDs are special cases of ZSDDs

 A ZSDD with a right-linear vtree topologically corresponds to a ZDD

Outline

- Introduction
 - Subgraph enumeration with decision diagrams
- Our target representation: ZSDDs
- Proposed algorithms
- Experiments and remarks

Problem 1: Cardinality constraint

Input: vtree T, non-negative integer k Output: a ZSDD representing the family of sets with **exactly k** elements

With a small modification, we can deal with at most/least k (details are omitted)

- We show a recursive formula for the desired set family
- Definitions:
 - v: vnode (a node of a vtree)
 - v^l, v^r: left/right children of v
 - E(v): the set of elements correspond to the leaf vnodes of the sub-vtree rooted at v
 - For vnode v and non-negative integer i, we define $f(v, i) := \{S \subseteq E(v) \mid |S| = i\}$
 - The desired set family is $f(v^{\text{root}}, k)$

vtree

 v^{root} : the root vnode of T

Recursive formula for the cardinality constraint

- For a vnode v and a non-negative integer k,
- If v is a leaf vnode:

$$f(v,k) = \begin{cases} \{\emptyset\} & (k=0) \\ \{\{\ell(v)\}\} & (k=1) \\ \{\} & (k \ge 2) \end{cases}$$

 $\ell(v)$: an element corresponding to

a leaf vnode v

Definition

 $f(v,k) := \{ S \subseteq E(v) \mid |S| = k \}$

23

Recursive formula for the cardinality constraint

- For a vnode v and a non-negative integer k,
- If v is a leaf vnode:

$$f(v,k) = \begin{cases} \{\emptyset\} & (k=0) \\ \{\{\ell(v)\}\} & (k=1) \\ \{\} & (k \ge 2) \end{cases}$$

 $\ell(v)$: an element corresponding to

a leaf vnode v

Definition

 $f(v,k) := \{ S \subseteq E(v) \mid |S| = k \}$

• If v is internal:

 $f(v,k) = \bigcup_{i=0}^{k} \left(f(v^{l},i) \times f(v^{r},k-i) \right)$ If we take i elements from $E(v^{l})$, we have to take k - i elements from $E(v^{r})$

Example of ZSDD construction

Example of ZSDD construction

vtree

Example of ZSDD construction

vtree

By the recursive formula, we can show the correctness of the algorithm and analyze the size of the output ZSDD

Theorem 1

The size of the output ZSDD is $O(|E|k^2)$

Problem 2: Degree constraint

Input: graph G, vtree T, function $\delta^* \colon V(G) \to \mathbb{N}$ Output: a ZSDD representing the set of subgraphs s.t., for all $u \in V(G)$, the degree of u equals $\delta^*(u)$

 N: the set of non-negative integers
 With a small modification, we can deal with at most/least k degree (details are omitted)

- V(v): The set of endpoints of some edge in E(v)
- deg(S, u): The degree of

vertex u in graph (V(v), S)

- Idea: The degree constraint = The cardinality constraint for each vertex
- For vnode v and function $\delta: V(v) \to \mathbb{N}$, we define

 $f(v,\delta) := \{ S \subseteq E(v) \mid \forall u \in V(v), \deg(S,u) = \delta(u) \}$

The set of subgraphs of (V(v), E(v)) satisfying the degree constraint in V(v)

The desired set family is $f(v^{\text{root}}, \delta^*)$

Recursive formula for the degree constraint

- For vnode v and function $\delta: V(v) \to \mathbb{N}$,
- If v is a leaf vnode, let u_1 and u_2 be the endpoints of the edge $\ell(v)$. Then,

$$f(v, \delta) = \begin{cases} \{\emptyset\} & (\delta(u_1) = \delta(u_2) = 0) \\ \{\{\ell(v)\}\} & (\delta(u_1) = \delta(u_2) = 1) \\ \{\} & (\text{ otherwise }) \end{cases}$$

 $\ell(v)$: an element corresponding to a leaf vnode v

Recursive formula for the degree constraint

- For vnode v and function $\delta: V(v) \to \mathbb{N}$,
- . If v is a leaf vnode, let u_1 and u_2 be the endp

$$f(v, \delta) = \begin{cases} \{\emptyset\} & (\delta(u_1) = \delta(u_2) = 0) \\ \{\{\ell(v)\}\} & (\delta(u_1) = \delta(u_2) = 1) \\ \{\} & (\text{ otherwise }) \end{cases}$$

• If v is internal:

$$f(v,\delta) = \bigcup_{(\delta^l,\delta^r) \in \mathscr{P}(v,\delta)} \left(f(v^l,\delta^l) \times f(v^r,\delta^r) \right)$$

For each $u \in V(v)$, if we take i edges from $E(v^l)$, we have to take k - i edges from $E(v^r)$ $\mathcal{P}(v,\delta) \text{ is the set of pairs of}$ functions $\delta^l \colon V(v^l) \to \mathbb{N}$ and $\delta^r \colon V(v^r) \to \mathbb{N}$ s.t. $\begin{cases} u \in V(v^l) \cap V(v^r) \Rightarrow \delta^l(u) + \delta^r(u) = \delta(u) \\ u \in V(v^l) \setminus V(v^r) \Rightarrow \delta^l(u) = \delta(u) \\ u \in V(v^r) \setminus V(v^l) \Rightarrow \delta^r(u) = \delta(u) \end{cases}$ The size of the output ZSDD for the degree constraint

- Bottleneck: When v is an internal vnode, for each $u \in V(v^l) \cap V(v^r)$, we decide the degree of u in $E(v^l)$
- $V(v^l) \cap V(v^r)$ is O(|V|), but can be smaller depending on the vtree

Let
$$w(T) := \max_{v \in in(T)} \left| V(v^l) \cap V(v^r) \right|$$
 and $w(G) := \min_T w(T)$.

Then, the ZSDD size is $O(|E|d^{2w(G)})$

in(T): The set of internal vnodesd: 1 + (the maximam value appearing in the degree constraint)

• w(G) equals the branch-width bw(G)[Nishino et al., AAAI '17]

Theorem 2

The size of the output ZSDD is $O(|E|d^{2bw(G)})$

Outline

- Introduction
 - Subgraph enumeration with decision diagrams
- Our target representation: ZSDDs
- Proposed algorithms
- Experiments and remarks

Experiments

- We compared our top-down algorithms for ZSDDs with the existing top-down algorithms for ZDDs in the same way as the existing paper [Nishino et al., AAAI '17]
- Benchmark graphs: TSPLIB and RomeGraph
- Types of subgraphs: Maximum degree \leq 2 and spanning trees

В

general vtree

right-linear vtree

(for ZDDs)

- Three types of vtrees:
 - TD: Heuristics of branch decomposition [Cook and Seymour, INFORMS J. Comput., '03]
 - Z(b): Bredth-first ordering (used in Graphillion [Inoue et al., Int. J. Softw. Tools Technol. Transf., '16])
 - Z(v): Right-linear vtree obtained from TD (for ZSDDs) [Xue et al., AAAI '12]
- All codes are written in C++ and compiled by g++-5.4.0 with -O3 option
- Machine: Intel Xeon W-2133 3.60 GHz CPU, 256 GB RAM

Result: Max. deg. ≤ 2

			Time (ms)			Size			
instance	V	E	TD	Z(b)	Z(v)	TD	Z(b)	Z(v)	
att48	48	130	381	6801	2291	194786	1065745	507169	
berlin52	52	145	1021	-	36354	807660	-	5229861	
eil51	51	142	1012	247736	46524	774280	27277682	5974875	
grafo10106	100	119	5	2617	16	2658	15461	7529	
grafo10124	100	139	9237	-	40842	3060950	-	3283397	
grafo10153	100	136	3784	-	4658	832943	-	561283	
grafo10183	100	132	132	-	157837	80127	-	4088915	
grafo10184	100	140	4981	-	119366	1006210	-	2002968	
grafo10204	100	148	156529	-	303366	15712819	-	19847326	
grafo 10223	100	135	863	-	5956	330554	-	826121	
			ZSDD	ZDD		ZSDD	ZDD		

- For comparison, we omit instances for which all the methods finished within a second or at most one method finished within 10 minutes
- For all graphs, TD was faster and memory-saving than Z(b) and Z(v)
- Time: TD was up to 245 (resp., 1195) times faster than Z(b) (resp., Z(v))
- Size: TD was up to 35 (resp., 51) times smaller than Z(b) (resp., Z(v))
- These results show the efficiency of our method

Result: Spanning trees

			Time (ms)			Size		
instance	V	E	TD	Z(b)	Z(v)	TD	Z(b)	Z(v)
att48	48	130	3494	103871	3005	279613	5098205	387715
berlin52	52	145	11826	-	62706	937746	-	3194017
eil51	51	142	25828	-	94272	838254	-	7178190
ulysses22	22	56	39	3391	65	3036	520035	16762
grafo10106	100	119	28	221161	53	1756	836212	4057
grafo 10183	100	132	2866	-	538878	224373	-	16414697
grafo 10223	100	135	48563	-	128097	1009299	-	7313087
grafo 10248	100	126	301	195249	672	16524	1617024	47605
	-		ZSDD) ZDD		ZSDD	ZDD	

- For most graphs, TD was faster and memory-saving than Z(b) and Z(v)
- Time: TD was up to 7898 (resp., 188) times faster than Z(b) (resp., Z(v))
- Size: TD was up to 476 (resp., 73) times smaller than Z(b) (resp., Z(v))
- These results show the efficiency of our method
- Exception: For att48, Z(v) was faster than TD (due to the overhead of TD)

Concluding remarks

- We have proposed a novel framework of algorithms for top-down ZSDD construction
- We have applied our framework for three fundamental constraints: cardinality, degree, and connectivity
- We have shown that the sizes of output ZSDDs are bounded by the branch-width of the input graph
- Experiments confirmed the efficiency of our method
- We believe that our framework is useful for various problems
 - Using Apply operations, we can extract degree-constrained or connected subgraphs from ZSDDs storing set of subgraphs

Appendix

- Detailed description of ZSDDs
- Cardinality constraint: at most k
- Experimental results: max. deg. ≤ 3

(X, Y)-partitions

- ZSDDs are obtained by recursively applying
 (X, Y)-partitions to a set family
- <u>Definition</u>

Let f be a set family and X, Y be a partition of the universe of f. Set family f can be written as

where p_i and s_i are the set families whose universes are X and Y, respectively. We call $p_1, ..., p_h$ primes and $s_1, ..., s_h$ subs. If the primes are exclusive ($p_i \cap p_j = \emptyset$ for all $i \neq j$), Equation (1) is an (X, Y)-partition.

Example of an (X, Y)-partition

• Let $f = \{\{A, B\}, \{A, C\}, \{B, C\}, \{C, D\}\}, \mathbf{X} = \{A, B\}, \text{ and } \mathbf{Y} = \{C, D\}.$ An (\mathbf{X}, \mathbf{Y}) -partition of f is

$$f = \left[\{\{\}\} \sqcup \{\{C, D\}\} \right] \cup \left[\{\{A\}, \{B\}\} \sqcup \{\{C\}\} \right] \cup \left[\{\{A, B\}\} \sqcup \{\{\}\} \right]$$

prime sub
$$\{\{C, D\}\} \qquad \{\{A, C\}, \{B, C\}\} \qquad \{\{A, B\}\}$$

• primes are exclusive

Vtree and ZSDD

- The order of (X, Y)-partitions is determined by a vtree
- A vtree is a rooted, ordered, and full binary tree whose leaves correspond to the elements of the universe
- The root ZSDD node (znode) respects the root vtree node
- From the root znode, a ZSDD is obtained by recursively applying (X, Y)-partitions to a set family

Cardinality constraint: at most k

Input: vtree T, non-negative integer k Output: a ZSDD representing the family of sets with at most **k** elements

• If we define $g(v,k) := \{S \subseteq E(v) \mid |S| \le k\}$,

we can show a similar equation as "exactly k" constraint

$$g(v,k) = \bigcup_{i=0}^{k} \left(g(v^l,i) \sqcup g(v^r,k-i) \right)$$

- However, this equation is not an (E(v^l), E(v^r))-partition because the primes are not exclusive
 - For $i \leq j$, we have $g(v^l, i) \subseteq g(v^l, j)$

Similar results hold for

"at least k"

Cardinality constraint: at most k

- However, this equation is not an $(E(v^l), E(v^r))$ -partition because the primes are not exclusive
 - For $i \leq j$, we have $g(v^l, i) \subseteq g(v^l, j)$

• The size of the output ZSDD is

 $O(|E|k^2)$ like "exactly k" constraint

Result: max. deg. ≤ 3

			Compilation time (ms)			Size		
instance	V	E	TD	Z(b)	Z(v)	TD	Z(b)	Z(v)
att48	48	130	2392	15791	22576	564163	1408493	994667
berlin52	52	145	7478	-	535530	2727435	-	11561690
eil51	51	142	17003	-	445662	3283534	-	14446615
grafo10106	100	119	14	3628	37	1565	1162	2504
grafo10124	100	139	186539	-	139582	1625041	-	589765
grafo10153	100	136	135821	-	10989	668892	-	51571
grafo10184	100	140	139648	-	398498	351873	-	212686
grafo10223	100	135	14332	-	18953	427096	-	115327

- For most graphs, TD was faster and memory-saving than Z(b) and Z(v)
 - For grafo(10124|10153), Z(v) was better than TD
- Time: TD was up to 259 (resp., 71) times faster than Z(b) (resp., Z(v))
- Size: TD was up to 5.5 (resp., 4.4) times smaller than Z(b) (resp., Z(v))