
Enumerating All Subgraphs under Given
Constraints Using Zero-suppressed

Sentential Decision Diagrams

Yu Nakahata1, Masaaki Nishino2, Jun Kawahara1, Shin-ichi Minato1

1Graduate School of Informatics, Kyoto University, Japan
2NTT Communication Science Laboratories, NTT Corporation, Japan

June 16, SEA 2020

1

Outline

• Introduction

• Subgraph enumeration with decision diagrams

• Our target representation: ZSDDs

• Proposed algorithms

• Experiments and remarks

2

Subgraph enumeration

• Important in many areas of computer science

• Output can be exponentially larger than the input size

3

Input: A graph G
Output: All specific subgraphs (e.g., paths and cycles) of G

[1] https://oeis.org/A007764

6x6 grid graph
(36 vertices
60 edges)

s

t

1,262,816 paths [1]

…

ZDD (Zero-suppressed Binary Decision Diagram) [Minato, DAC ’93]

• ZDDs are compact representations of set families

• ZDDs support several queries on set families

• Counting, random sampling, Apply operations

4

{ {A, D},
{A, C, E},
{B, C, D},
{B, E} }

ZDD

A

B

C

D

C

E

⊤⊥

Set family

A

B

C

D

C

E

⊤⊥
{ {A, D},
{A, C, E},
{B, C, D},
{B, E} }

{ {A, D},
{A, C, E},
{B, C} }

A

B

C

D

C

E

⊤⊥

A

D

C

E

⊤⊥

{ {A, D},
{A, C, E} }

∩ =

Subgraph enumeration with ZDDs

• An (edge-induced) subgraph <=> its edge set

• A set of subgraphs <=> a familiy of edge sets

• => A ZDD can represent a set of subgraphs

5

s, t: vertex
A, B, …, E: edge

Graph G

s t
A

B
C

D

E {A, D} {A, C, E} {B, C, D} {B, E}

s-t paths

ZDD

A

B

C

D

C

E

⊤⊥

Merit of subgraph enumeration with ZDDs

• A ZDD can represent a set of subgraphs compactly

• Applied for several graph-related problems 
(e.g., [Inoue et al., IEEE Trans. Smart Grid, ’14], [Nakahata et al., SEA ’18])

6

1,262,816 paths in the 6x6 grid

…

5637 nodes
ZDD

(Calculated by Graphillion*)

*https://github.com/takemaru/graphillion

Top-down construction of ZDDs

• Construct a ZDD directly without explicitly
enumerating subgraphs

• The size of the output ZDD is bounded by 
the path-width of G 
[Inoue and Minato, TCS-TR-A-16-80. Hokkaido University, ’16]

7

Input: A graph G
Output: A ZDD representing a set of all specific subgraphs  
 (e.g., paths and cycles) of G

Graph G

s t
A

B
C

D

E

ZDD

A

B

C

D

C

E

⊤⊥

{A, D} {A, C, E} {B, C, D} {B, E}

s-t paths

s, t: vertex
A, B, …, E: edge

Top-down construction algorithms for ZDDs

• General framework [Kawahara et al., IEICE Trans. ’17] can deal with
several fundamental constraints for subgraphs

• By combining the fundamental constraints, we can specify
several types of subgraphs -> many applications

8

Applications

electrical network [Inoue+14]
network reliability evaluation [Hardy+07]

text summarization [Nishino+15]
political redistricting [Kawahara+17]
evacuation planning [Nakahata+18]

…

matching
path
cycle

spanning tree
spanning forest

…

SubgraphsFundamental constraints 
for subgraphs

the number of edges
degrees of vertices

connectivity of vertices

s-t path <=>
• connected (ignoring isolated vertices),
• s and t have degree 1, and
• the other vertices have degree 0 or 2

s t
2

2

11
e.g.,

ZSDD (Zero-suppressed Sentential Decision Diagram) [Nishino et al., AAAI ’16]

• ZSDDs are compact representations of 
set families and generalizations of ZDDs

• Merits of ZSDDs

• Theoretically, there exist set families that
have poly-size ZSDD but exp-size ZDD 
[Bova et al., IJCAI ’16]

• Several poly-time queries like ZDDs

• Counting, random sampling, 
Apply operations

• Are ZSDDs are useful for subgraph
enumeration?

9

(We explain how to read 
the figure later)

A ZSDD

1

2

ε

B A

3

ε

D C

±CB

Subgraph enumeration with ZSDDs

• Existing method: Algorithms for matchings and paths 
[Nishino et al., AAAI ’17]

• ☺The sizes of output ZSDDs are bounded by the branch-
width of the input graph, which are smaller than bounds of
ZDDs by the path-width

• ☺Experimentally faster than methods for ZDDs and the
output ZSDDs are smaller than ZDDs

• 😥It seems difficult to extend the algorithms 
to other types of subgraphs

• 😥The algorithms are explained in a procedural way,  
which makes theoretical analysis difficult

10

bw(G) = O(log |V |pw(G))

Fundamental constraints 
for subgraphs used in ZDDs

the number of edges
degrees of vertices

connectivity of vertices

Our contribution (1)

• We propose a novel framework of top-down construction
algorithms for ZSDDs

• We apply our framework to the three fundamental constraints
used in ZDDs: the number of edges, degrees, and connectivity

• By combining these constraints, we can specify several types
of subgraphs (e.g., paths, cycles, and spanning trees)

• To design an algorithm using our framework, one only has to
show a recursive formula for the desired set of subgraphs 
-> makes theoretical analysis easier (e.g., correctness and
complexity)

11

bw(G) = O(log |V |pw(G))

Our contribution (2)

• We show that the sizes of output ZSDDs are bounded by the
branch-width of the input graph (not only for matchings and paths)

• Experimental results show that the proposed method can
construct ZSDDs faster than the existing method for ZDDs and
that the output ZSDDs are smaller than ZDDs

• Our method extends types of subgraphs that ZSDDs can be
constructed 
-> ZSDD can be applied for problems that ZDDs has been
applied for

12

bw(G) = O(log |V |pw(G))

Outline

• Introduction

• Subgraph enumeration with decision diagrams

• Our target representation: ZSDDs

• Proposed algorithms

• Experiments and remarks

13

ZSDDs
• ZSDDs are obtained by recursively decomposing 

a set family into sub-families

14

For set families f and g,
f × g = {a ∪ b ∣ a ∈ f, b ∈ g}

[{{}} × {{C, D}}] ∪ [{{A}} × {{C}}] ∪ [{{B}} × {{C}}] ∪ [{{A, B}} × {{}}]

{{A, B}, {A, C}, {B, C}, {C, D}}

{{C, D}} {{A, C}} {{B, C}} {{A, B}}

A, B, C, D

A, B C, D

ZSDDs
• ZSDDs are obtained by recursively decomposing 

a set family into sub-families

15

A, B, C, D

A, B C, D

{{A}} {{C}} {{B}} {{C}} {{A, B}}{{C, D}}{{}} {{}}

sub-ZSDD

ZSDDs
• ZSDDs are obtained by recursively decomposing 

a set family into sub-families

16

A, B, C, D

A, B C, D

{{A}} {{C}} {{B}} {{C}} {{A, B}}{{C, D}}{{}} {{}}

sub-ZSDD

These are the same sub-ZSDDs

ZSDDs
• ZSDDs are obtained by recursively decomposing 

a set family into sub-families

17

A, B, C, D

A, B C, D

{{A}, {B}} {{C}} {{A, B}}{{C, D}}{{}} {{}}

sub-ZSDD

Vtree and ZSDD

• A ZSDD is obtained by recursively decomposing 
a set family into sub-families

• The order of decomposition is defined by a vtree

18

ZSDD representing

{A, B}

1

3 2 2

εε

D C ε A B ε B A

C{ }
{C} { }{D, C}

{A}, {B}

f = {{A, B}, {A, C}, {B, C}, {C, D}}

vtree

B A D C

2 3

1

ZDDs are special cases of ZSDDs

• A ZSDD with a right-linear vtree topologically corresponds
to a ZDD

19

right-linear vtree

B

A

DC

2

3

1

ZDD

{ {A, B}, {B, C}, {C, D} }

=

ZSDD

1

3

2

ε

C D

ε B C

BA

A

B

⊤⊥

B

C C

D ⊤⊥⊥

⊤⊥

Outline

• Introduction

• Subgraph enumeration with decision diagrams

• Our target representation: ZSDDs

• Proposed algorithms

• Experiments and remarks

20

Problem 1: Cardinality constraint

• We show a recursive formula for the desired set family

• Definitions:
• v: vnode (a node of a vtree)

• : left/right children of v

• E(v): the set of elements correspond 
to the leaf vnodes of the sub-vtree rooted at v

• For vnode v and non-negative integer i, 
we define

• The desired set family is

vl, vr

f(v, i) := {S ⊆ E(v) ∣ |S | = i}

f(vroot, k)

21

Output: a ZSDD representing the family of sets  
 with exactly k elements

Input: vtree T, non-negative integer k

: the root vnode of Tvroot

vtree

v

vl vr

……… …

…

E(v)

With a small modification, 
we can deal with at most/least k

(details are omitted)

Recursive formula for the cardinality constraint

• For a vnode v and a non-negative integer k,

• If v is a leaf vnode:

f(v, k) =
{∅} (k = 0)
{{ℓ(v)}} (k = 1)
{} (k ≥ 2)

Definition
f(v, k) := {S ⊆ E(v) ∣ |S | = k}

: an element corresponding to 
a leaf vnode v

ℓ(v)

Recursive formula for the cardinality constraint

• For a vnode v and a non-negative integer k,

• If v is a leaf vnode:

23

Definition
f(v, k) := {S ⊆ E(v) ∣ |S | = k}

f(v, k) =
{∅} (k = 0)
{{ℓ(v)}} (k = 1)
{} (k ≥ 2)

f(v, k) =
k

⋃
i = 0

(f(vl, i) × f(vr, k − i))

• If v is internal:

If we take i elements from , 
we have to take k - i elements from

E(vl)

E(vr)

: an element corresponding to 
a leaf vnode v

ℓ(v)

Example of ZSDD construction

24

Let k = 2.

vtree

B A D C

2 3

1

1
2

0 2 1 1 2 0

How many elements 
do we have to take?

Example of ZSDD construction

25

Let k = 2.

vtree

B A D C

2 3

1

1

3 2 3 2

ε ε

D C ε A B ε ε C D ε B A

2

0 2 1 1 2 0

1 1 0 1 1 0 0 1 1 0 1 1

1
2

0 2 1 1 2 0

How many elements 
do we have to take?

Example of ZSDD construction

26

Let k = 2.

vtree

B A D C

2 3

1

1

3 2 3 2

ε ε

D C ε A B ε ε C D ε B A

2

0 2 1 1 2 0

1 1 0 1 1 0 0 1 1 0 1 1

1
2

0 2 1 1 2 0

How many elements 
do we have to take?

Theorem 1
The size of the output  
ZSDD is O(|E |k2)

By the recursive formula,
we can show the correctness of 
the algorithm and analyze the size 

of the output ZSDD

Problem 2: Degree constraint

27

• Idea: The degree constraint = The cardinality constraint for each vertex

• For vnode v and function , we define δ : V(v) → ℕ

f(v, δ) := {S ⊆ E(v) ∣ ∀u ∈ V(v), deg(S, u) = δ(u)}

Output: a ZSDD representing the set of subgraphs 
s.t., for all , the degree of u equals u ∈ V(G) δ*(u)

Input: graph G, vtree T, function δ*: V(G) → ℕ

The set of subgraphs of (V(v), E(v))
satisfying the degree constraint in V(v)

: the set of 
non-negative integers

ℕ

• : The set of endpoints of 
some edge in

• : The degree of 
vertex u in graph

V(v)

E(v)

deg(S, u)

(V(v), S)

 δ*(u)

A graph G

2

2

11

Subgraphs satisfying  
the degree constraint

2

2

11
2

2

11

The desired set family is f(vroot, δ*)

With a small modification, 
we can deal with 

at most/least k degree
(details are omitted)

Recursive formula for the degree constraint

• For vnode v and function ,

• If v is a leaf vnode, let and be the endpoints of the edge . Then,

δ : V(v) → ℕ

u1 u2 ℓ(v)

28

f(v, δ) =
{∅} (δ(u1) = δ(u2) = 0)
{{ℓ(v)}} (δ(u1) = δ(u2) = 1)
{} (otherwise)

: an element corresponding to 
a leaf vnode v

ℓ(v)

f(v, δ) = ⋃
(δl,δr) ∈ 𝒫(v,δ)

(f(vl, δl) × f(vr, δr))

Recursive formula for the degree constraint

• For vnode v and function ,

• If v is a leaf vnode, let and be the endpoints of the edge . Then,

δ : V(v) → ℕ

u1 u2 ℓ(v)

29

f(v, δ) =
{∅} (δ(u1) = δ(u2) = 0)
{{ℓ(v)}} (δ(u1) = δ(u2) = 1)
{} (otherwise)

• If v is internal: is the set of pairs of  

functions and
 s.t.

𝒫(v, δ)

δl : V(vl) → ℕ

δr : V(vr) → ℕ

u ∈ V(vl) ∩ V(vr) ⇒ δl(u) + δr(u) = δ(u)
u ∈ V(vl)∖V(vr) ⇒ δl(u) = δ(u)
u ∈ V(vr)∖V(vl) ⇒ δr(u) = δ(u)

δl(u)

Graph 

(V(vl), E(vl))

1

2

1 1
1

0 Graph 

(V(vr), E(vr))

δr(u)

Graph (V(v), E(v))

δ(u) 2

2

11
V(vl) ∩ V(vr)

For each , if we take i edges from ,
we have to take k - i edges from

u ∈ V(v) E(vl)

E(vr)

The size of the output ZSDD for the degree constraint

30

• Bottleneck: When v is an internal vnode, for each ,

we decide the degree of in

• is , but can be smaller depending on the vtree

• Let and . 

Then, the ZSDD size is

• equals the branch-width  
[Nishino et al., AAAI ’17]

u ∈ V(vl) ∩ V(vr)

u E(vl)

V(vl) ∩ V(vr) O(|V |)

w(T) := max
v ∈ in(T)

V(vl) ∩ V(vr) w(G) := min
T

w(T)

O(|E |d2w(G))
w(G) bw(G)

Theorem２
The size of the output ZSDD is O(|E |d2bw(G))

in(T): The set of internal vnodes
d: 1 + (the maximam value  
 appearing in the degree constraint)

Outline

• Introduction

• Subgraph enumeration with decision diagrams

• Our target representation: ZSDDs

• Proposed algorithms

• Experiments and remarks

31

• We compared our top-down algorithms for ZSDDs with the
existing top-down algorithms for ZDDs in the same way as the
existing paper [Nishino et al., AAAI ’17]

• Benchmark graphs: TSPLIB and RomeGraph

• Types of subgraphs: Maximum degree 2 and spanning trees

• Three types of vtrees:

• TD: Heuristics of branch decomposition 
[Cook and Seymour, INFORMS J. Comput., ’03]

• Z(b): Bredth-first ordering (used in Graphillion 
[Inoue et al., Int. J. Softw. Tools Technol. Transf., ’16])

• Z(v): Right-linear vtree obtained from TD  
[Xue et al., AAAI ’12]

• All codes are written in C++ and compiled by g++-5.4.0 with -O3 option

• Machine: Intel Xeon W-2133 3.60 GHz CPU, 256 GB RAM

≤

Experiments

32

general vtree
B A D C

2 3

1

(for ZSDDs)

B

A

DC

2

3

1

right-linear vtree
(for ZDDs)

Result: Max. deg. 2≤

33

• For comparison, we omit instances for which all the methods finished within
a second or at most one method finished within 10 minutes

• For all graphs, TD was faster and memory-saving than Z(b) and Z(v)

• Time: TD was up to 245 (resp., 1195) times faster than Z(b) (resp., Z(v))

• Size: TD was up to 35 (resp., 51) times smaller than Z(b) (resp., Z(v))

• These results show the efficiency of our method

ZSDD ZDD ZDDZSDD

Result: Spanning trees

34

• For most graphs, TD was faster and memory-saving than Z(b) and Z(v)

• Time: TD was up to 7898 (resp., 188) times faster than Z(b) (resp., Z(v))

• Size: TD was up to 476 (resp., 73) times smaller than Z(b) (resp., Z(v))

• These results show the efficiency of our method

• Exception: For att48, Z(v) was faster than TD (due to the overhead of TD)

ZSDD ZDD ZSDD ZDD

Concluding remarks

• We have proposed a novel framework of algorithms for  
top-down ZSDD construction

• We have applied our framework for three fundamental
constraints: cardinality, degree, and connectivity

• We have shown that the sizes of output ZSDDs are bounded by
the branch-width of the input graph

• Experiments confirmed the efficiency of our method

• We believe that our framework is useful for various problems

• Using Apply operations, we can extract degree-constrained or 
connected subgraphs from ZSDDs storing set of subgraphs

35

Appendix

• Detailed description of ZSDDs

• Cardinality constraint: at most k

• Experimental results: max. deg. ≤ 3

36

(X, Y)-partitions
• ZSDDs are obtained by recursively applying 

(X, Y)-partitions to a set family

• Definition 
Let f be a set family and X, Y be a partition of the universe
of f. Set family f can be written as 

, 

where p_i and s_i are the set families whose universes are
X and Y, respectively. We call primes and

subs. If the primes are exclusive (for all),

Equation (1) is an (X, Y)-partition.

f =
h

⋃
i = 1

[pi ⊔ si]

p1, …, ph s1, …, sh

pi ∩ pj = ∅ i ≠ j

37

(1)
f ⊔ g = {a ∪ b ∣ a ∈ f, b ∈ g}
“join”

Example of an (X, Y)-partition

• Let , , and . 
An -partition of is

• primes are exclusive 
 

f = {{A, B}, {A, C}, {B, C}, {C, D}} X = {A, B} Y = {C, D}

(X, Y) f

38

{{C, D}} {{A, C}, {B, C}} {{A, B}}
prime sub

f = [{{}} ⊔ {{C, D}}] ∪ [{{A}, {B}} ⊔ {{C}}] ∪ [{{A, B}} ⊔ {{}}]

Vtree and ZSDD
• The order of (X, Y)-partitions is determined by a vtree

• A vtree is a rooted, ordered, and full binary tree whose
leaves correspond to the elements of the universe

• The root ZSDD node (znode) respects the root vtree node

• From the root znode, a ZSDD is obtained by recursively
applying (X, Y)-partitions to a set family

39

({A, B}, {C, D})-partition

vtree

B A D C

2 3

1

ZSDD representing

{A, B}

1

3 2 2

εε

D C ε A B ε B A

C{ }
{C} { }{D, C}

{A}, {B}

f = {{A, B}, {A, C}, {B, C}, {C, D}}

• If we define , 
we can show a similar equation 
as “exactly k” constraint 

• However, this equation is not 
an -partition 
because the primes are not exclusive

• For , we have

g(v, k) := {S ⊆ E(v) ∣ |S | ≤ k}

g(v, k) =
k

⋃
i = 0

(g(vl, i) ⊔ g(vr, k − i))

(E(vl), E(vr))

i ≤ j g(vl, i) ⊆ g(vl, j)

Cardinality constraint: at most k

40

Output: a ZSDD representing the family of sets  
 with at most k elements

Input: vtree T, non-negative integer k Similar results hold for
“at least k”

• If we define , 
we can show a similar equation 
as “exactly k” constraint 

• However, this equation is not 
an -partition 
because the primes are not exclusive

• For , we have

g(v, k) := {S ⊆ E(v) ∣ |S | ≤ k}

g(v, k) =
k

⋃
i = 0

(g(vl, i) ⊔ g(vr, k − i))

(E(vl), E(vr))

i ≤ j g(vl, i) ⊆ g(vl, j)

41

Output: a ZSDD representing the family of sets  
 with at most k elements

Input: vtree T, non-negative integer k

• By Combining the recursive formulas 
for f and g, we can construct  
a desired ZSDD

• The size of the output ZSDD is 
 like “exactly k” constraintO(|E |k2)

Use f instead of g 
for the primes

f(vl, i)

Definition
f(v, k) := {S ⊆ E(v) ∣ |S | = k}

Similar results hold for
“at least k”

Cardinality constraint: at most k

Result: max. deg. 3≤

42

• For most graphs, TD was faster and memory-saving than Z(b) and Z(v)

• For grafo(10124|10153), Z(v) was better than TD

• Time: TD was up to 259 (resp., 71) times faster than Z(b) (resp., Z(v))

• Size: TD was up to 5.5 (resp., 4.4) times smaller than Z(b) (resp., Z(v))

