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Subgraph enumeration

Input: A graph G
Output: All specific subgraphs (e.g., paths and cycles) of G

. Important in many areas of computer science

. Output can be exponentially larger than the input size
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(36 vertices 1,262,816 paths [1]
60 edges)
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[1] https://oeis.org/A007764



Z D D (Zero-suppressed Binary Decision Diagram) [Minato, DAC 93]

. /DDs are compact representations of set families

. /DDs support several queries on set families

. Counting, random sampling, Apply operations
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Subgraph enumeration with ZDDs

. An (edge-induced) subgraph <=> its edge set
. A set of subgraphs <=> a familly of edge sets

. => A /DD can represent a set of subgraphs

{A,D} (A C/E} {B,C,D} (B, E}

Graph G s-t paths

S, t: vertex
A, B, ---, E: edge




Merit of subgraph enumeration with ZDDs

. A ZDD can represent a set of subgraphs compactly

. Applied for several graph-related problems

(e.g., [Inoue et al., IEEE Trans. Smart Grid, '14], [Nakahata et al., SEA "18])
% ﬁ E @ ZDD

1,262,816 paths in the 6x6 grid 5637 nodes

E
i

(Calculated by Graphillion®)

*https://github.com/takemaru/graphillion



Top-down construction of ZDDs

Input: A graph G
Output: A ZDD representing a set of all specific subgraphs
(e.q., paths and cycles) of G

A oD
S @ t « Construct a ZDD directly without explicitly
enumerating subgraphs

Graph G
* . The size of the output ZDD is bounded by
the path-width of G
»@ [Inoue and Minato, TCS-TR-A-16-80. Hokkaido University, '106]
\

S, T. vertex
{A’ D] [A’ C1 E} [B’ Ca D} {B’ E] A, B, ety E edge

s-t paths




Top-down construction algorithms for ZDDs

. General framework [Kawahara et al., IEICE Trans. '17] can deal with
several fundamental constraints for subgraphs

. By combining the fundamental constraints, we can specify
several types of subgraphs -> many applications

the number of edges
degrees of vertices
connectivity of vertices

Fundamental constraints
for subgraphs

s-t path <=>

-

. connected (ignoring isolated vertices),
- s and t have degree 1, and
. the other vertices have degree O or 2

~

\_

matching
path
cycle

spanning tree
spanning forest

~

j

Subgraphs
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network reliability evaluation [Hardy+07]

~

electrical network [Inoue+14]

text summarization [Nishino+15]
political redistricting [Kawahara+17]
evacuation planning [Nakahata+18]

j

Applications



ZS D D (Zero-suppressed Sentential Decision Diagram) [Nishino et al., AAAl "16]

. /SDDs are compact representations of

set families and generalizations of ZDDs /(D\

. Merits of ZSDDs tle] [B[+C| [e I
. Theoretically, there exist set families that I ]
have poly-size ZSDD but exp-size ZDD B |A D [C
[Bova et al., IJCAI *16] A ZSDD
_ _ _ (We explain how to read
. Several poly-time queries like ZDDs the figure later)

. Counting, random sampling,
Apply operations

. Are ZSDDs are useful for subgraph
enumeration?



Subgraph enumeration with ZSDDs

. Existing method: Algorithms for matchings and paths
[Nishino et al., AAAI "17]
. @The sizes of output ZSDDs are bounded by the branch-

width of the input graph, which are smaller than bounds of
/DDs by the path-width

. @Experimentally faster than methods for ZDDs and the
output ZSDDs are smaller than ZDDs [the number of edges]
C S

degrees of vertices

. @It seems difficult to extend the algorithms \ connectivity of vertice

Fundamental constraints

to other types of subgraphs
yP grap for subgraphs used in ZDDs

. @The algorithms are explained in a procedural way,
which makes theoretical analysis difficult
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Our contribution (1)

. We propose a novel framework of top-down construction
algorithms for ZSDDs

. We apply our framework to the three fundamental constraints
used in ZDDs: the number of edges, degrees, and connectivity

. By combining these constraints, we can specify several types
of subgraphs (e.g., paths, cycles, and spanning trees)

. To design an algorithm using our framework, one only has to
show a recursive formula for the desired set of subgraphs
-> makes theoretical analysis easier (e.g., correctness and
complexity)

11



Our contribution (2)

. We show that the sizes of output ZSDDs are bounded by the
branch-width of the input graph (not only for matchings and paths)

. Experimental results show that the proposed method can
construct ZSDDs faster than the existing method for ZDDs and
that the output ZSDDs are smaller than ZDDs

. Our method extends types of subgraphs that ZSDDs can be
constructed

-> /SDD can be applied for problems that ZDDs has been
applied for

12
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/SDDs

. /SDDs are obtained by recursively decomposing
a set family into sub-families

A, B, C\,D [{A,B},{A, C},{B,C},{C,D}}
B C,D *
Lo} x{teon|ul{ta (o) v [{(iBy < {ieny | u [{1a.81) x {0}

C.D}} {4.¢1j U(B.C}} {{A.B}]

Aa

For set families f and g,
fxXxg={aub|la€ef, beg}
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/SDDs

. /SDDs are obtained by recursively decomposing
a set family into sub-families

A B, C D

7N\

Z el

! ! ! ? ! ! ! !
Y Y v Y Y Y
sub-ZSDD A A A A A A A

y v
ey (A day By (o HAB) g
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/SDDs

. /SDDs are obtained by recursively decomposing
a set family into sub-families

A B, C D
/N
e \\
! ! ! ? ! ! ! !
v v v v v v

y Y
sub-ZSDD A

ey Ay (ay By UGy HABY) g

These are the same sub-ZSDDs
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/SDDs

. /SDDs are obtained by recursively decomposing
a set family into sub-families

A B, C,D
/7 N\
A B C.D Q\
? ? ! ! ! ?
v v v v v '
sub-ZSDD

{1} {{C. DY} HA) (B}) {{C}} A BY} {{}}
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Viree and ZSDD

. A ZSDD is obtained by recursively decomposing
a set family into sub-families

. The order of decomposition is defined by a vtree

0

A}, {B]

D, C}

/®\
{] { \

e C
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E
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e

18

ZSDD representing
f=UA,B},{A,C},{B,C},{C,D}]



/DDs are special cases of ZSDDs

- A ZSDD with a right-linear viree topologically corresponds
to a ZDD

€ I AlB 1 .
N

N _ .
Q Q Wm = /\
i\ elyl BE VAN
1 LT
@x @ C D
L4 v
LT C|D
/DD /SDD right-linear vtree

{ {A, B}, (B, C}, {C, D} }
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Problem 1: Cardinality constraint

Input: vtree T, non-negative integer k With & sl modification
Output: a ZSDD representing the family of sets | we can deal with at most/least k

i (details are omitted)
with exactly k elements

- We show a recursive formula for the desired set family

. Definitions:

. V: vhode (a node of a vtree) v/
/" N\
vl v’ left/right children of v y! y’
/N /\
. E(v): the set of elements correspond
to the leaf vnhodes of the sub-vtree rooted at v )
viree

. For vnode v and non-negative integer |,
we define f(v,i) ;= {SCEW) | |S| =i}

. The desired set family is f(v™, k) yot the root vnode of T

21



Recursive tformula for the cardinality constraint

. For a vnode v and a non-negative integer Kk,

. |Tf vis aleaf vhode:

Z(v). an element corresponding to

{@} (k=0) a leaf vnode v
Jw, k)= {1} (k=1) Definition
i (k>2) f,k) == {SCEW) | |S| = k}




Recursive tformula for the cardinality constraint

. For a vnode v and a non-negative integer Kk,

. |Tf vis aleaf vhode:

Z(v). an element corresponding to

{@} (k=0) a leaf vnode v
Jw, k)= {1} (k=1) Definition
i (k>2) f,k) == {SCEW) | |S| = k}

. If vis internal:

k
foky = (f0hi) x f07 k= i)
i=0
A\

If we take i elements from E(),

we have to take k - | elements from EGW")

23



Example of ZSDD construction

Let k = 2. ‘ How many elements
5 do we have to take?
/ \, 1

O 2 [ 2 0
viree

24



Example of ZSDD construction

Let k = 2. ‘ How many elements
5 do we have to take?
/ \, 1
O 2 1 1 2 0
viree
2
/@\
\4
Ele AR
N E 1 24 0
2 © 2
v \ v
DIC||elA||Ble||e|C||Dle||BIA
11T O1T 1TO O71T 1T O 11
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Example of ZSDD construction

Let k = 2. ‘ How many elements
] do we have to take?
/ N\ -
/\ /\ y
B A D C

viree
By the recursive formula, ?
we can show the correctness of /?\
the algorithm and analyze the size € | AR
of the output ZSDD O 32 ek 2% 0
3 2 3

Theorem | oicl e A
The size of the output b
ZSDD is O( | E| &)

20



Problem 2: Degree constraint

N: the set of

Input: graph G, vtree T, function §*: V(G) — N non-negative integers
Output: a ZSDD representing the set of subgraphs | i a small modification
s.t., for all u € V(G), the degree of u equals §*(u) we can deal with

at most/least k degree

(details are omitted)

. V(v): The set of endpoints of

some edge in E(v)

A graph G Subgraphs satisfying . deg(S,u): The degree of

the degree constraint vertex u in graph (V(v), S)
- ldea: The degree constraint = The cardinality constraint for each vertex
. For vnode v and function 6: V(v) - N, we define

f,0) ={SCEW) |VYue V),deg(S,u) = o6(u)}

The set of subgraphs of (V(v), E(v))

' IV root Sk
satisfying the degree constraint in V(v) The desired set family Is f(v%, 5%)

27



Recursive formula for the degree constraint

. For vnode v and function §: V(v) =- N,

. If vis aleaf vnode, let 4, and u, be the endpoints of the edge #(v). Then,

(o} (5(u1) — 5(u2) =0) Z(v): an element corresponding to

f(V, 5) — { {f(\/)} } (5(I/l1) — 5(1/12) — 1 ) a leaf vnode v
8§ (otherwise )

28



Recursive formula for the degree constraint

. For vnode v and function §: V(v) =- N,

. If vis aleaf vnode, let 4, and u, be the endg

(D} (0(u) = 0(uy) = 0)
Jv,6) =4 {{Z(W)}} (0(wy) = 6(uy) = 1)
{} ( otherwise )

2 - VO n V)
<
Graph (V(v), E(v))

/\

Graph 2
(VoD EOY) (Vo) EVD)

. |T viIs internal:

ey = ) (L8 x fr8n)

/@(v, 5) I1s the set of pairs of

/\ (6,67 € P(v,0)

For each u € V(v), if we take i edges from E(Y),

we have to take k - | edges from E(W")

29

A\

functions &§': V(v') - N and
o": V(v') - N s.1.

e VO N V) = 8ku) + 87(u) = 8(u)
u € VOH\VO") = 6'(u) = 6(u)

1 € VOO\V(V) = 8"(u) = 8(u)




The size of the output ZSDD for the degree constraint

. Bottleneck: When v is an internal vnode, for each u € V(v) n V(v"),

we decide the degree of u in E(vY)

vovh n vivh | is O(| V]), but can be smaller depending on the vtree

and w(G) := min w(T).

) Let w(T) := max ‘V(vl) N V') -

vein(T)

Then, the ZSDD size is O( |E|d2W(G)) in(T): The set of internal vnodes
d: 1 + (the maximam value

appearing in the degree constraint)

. w(G) equals the branch-width bw(G)
[Nishino et al., AAAI "17]

Theorem?2
The size of the output ZSDD is O( | E|d*"?)

30
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Experiments

. We compared our top-down algorithms for ZSDDs with the
existing top-down algorithms for ZDDs in the same way as the
existing paper [Nishino et al., AAAI 17]

. Benchmark graphs: TSPLIB and RomeGraph

. Types of subgraphs: Maximum degree < 2 and spanning trees

. Three types of vtrees: / \
. [D: Heuristics of branch decomposition /]\ / \
[Cook and Seymour, INFORMS J. Comput., ‘03] 2
| P | /N /N / \
. Z(b): Bredth-first ordering (used in Graphilion § A § ¢

[Inoue et al, Int. J. Softw. Tools Technol. Transf., '16]) general viree right—lmear viree

. Z(v): Right-linear vtree obtained from TD (for Z5DDs) (for ZDDs)
[Xue et al., AAAI '12]

All codes are written in C++ and compiled by g++-5.4.0 with -O3 option
Machine: Intel Xeon W-2133 3.60 GHz CPU, 256 GB RAM

32



Result: Max. deg. < 2

Time (ms) Size
instance V| |E] TD Z(b) Z(v) TD Z(b) Z(v)
attdy 48 130 381 6301 2291 194786 1065745 507169
berlin52 52 145 1021 - 36354 807660 - 5229861
eilv1 51 142 1012 1247736 46524 774280 ||27277682 5974875
grafo10106 | 100 119 D 2617 16 2658 15461 7529
grafo10124 | 100 139 9237 - 40842 3060950 - 3283397
grafol0153 | 100 136 3784 : 4658 832943 - 561283
grafol0183 | 100 132 132 - 157837 80127 - 4088915
grafol1l0184 | 100 140 4981 - 119366 1006210 - 2002968
grafo10204 | 100 148 || 156529 - 303366 (] 15712819 - 19847326
grafo10223 | 100 135 363 - 0956 330554 - 826121
ZSDD||  ZDD ZSDD /DD

For comparison, we omit instances for which all the methods finished within
a second or at most one method finished within 10 minutes

For all graphs, TD was faster and memory-saving than Z(b) and Z(v)
Time: TD was up to 245 (resp., 1195) times faster than Z(b) (resp., Z(v))
Size: TD was up to 35 (resp., b1) times smaller than Z(b) (resp., Z(v))

These results show the efficiency of our method
33



Result: Spanning trees

Time (ms) Size
instance V| |E] TD Z(b) Z(v) TD Z(b) Z(v)
att48 48 130 3494 ||103871 3005 279613 || 5098205 387715
berlin52 52 145 [|11826 - 62706 937746 - 3194017
eild1 5l 142 |] 25828 - 94272 838254 - 7178190
ulysses22 22 510 39 3391 65 3036 520035 16762
grafol0106 | 100 119 28 11221161 03 1756 836212 4057
grafol0183 | 100 132 2866 - D38878 224373 - 16414697
grafo10223 | 100 135 ||48563 - 128097 (| 1009299 - 7313087
grafo10248 | 100 126 301 11195249 672 16524 || 1617024 47605
/ZSDD /DD /ZSDD /DD

For most graphs, TD was faster and memory-saving than Z(b) and Z(v)

Time: TD was up to 7898 (resp., 188) times faster than Z(b) (resp., Z(v))

Size: TD was up to 476 (resp., /3) times smaller than Z(b) (resp., Z(v))

These results show the efficiency of our method

Exception: For att48, Z(v) was faster than TD (due to the overhead of TD)

34




Concluding remarks

. We have proposed a novel framework of algorithms for
top-down ZSDD construction

- We have applied our framework for three fundamental
constraints: cardinality, degree, and connectivity

. We have shown that the sizes of output ZSDDs are bounded by
the branch-width of the input graph

. Experiments confirmed the efficiency of our method

. We believe that our framework is useful for various problems

Using Apply operations, we can extract degree-constrained or
connected subgraphs from ZSDDs storing set of subgraphs
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Appendix

. Detalled description of ZSDDs

. Cardinality constraint: at most k

. Experimental results: max. deg. <3
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(X, Y)-partitions

. /SDDs are obtained by recursively applying
(X, Y)-partitions to a set family

. Definition
Let T be a set family and X, Y be a partition of the universe
of f. Set family f can be written as

h -
—| Jipus Join’
d ig[pZUSl]’ W= fug={aubla€cf, beg]

where p_I and s_i are the set families whose universes are
X and Y, respectively. We call p,, ...,p, primes and s,, ..., s,

subs. If the primes are exclusive ( p,np; = @ for all i # j),

Equation (1) is an (X, Y)-partition.

37



Example of an (X, Y)-partition

. Letf={{A,B},{A,C},{B,C},{C,D}}, X={A,B}, and Y = {C, D}.
An (X, Y)-partition of fis

f= [{{_}} L] {{C,D}}] U [{{A},{B}} u{{_C}}] U [{{A,B}} LI {{}}]

prime sub

{{C,D}} {{A,C},{B,C}} {{A,B}}

. primes are exclusive

38



Viree and ZSDD

. The order of (X, Y)-partitions is determined by a viree

- A vtree Is a rooted, ordered, and full binary tree whose
leaves correspond to the elements of the universe

. The root ZSDD node (znode) respects the root vtree node

. From the root znode, a ZSDD is obtained by recursively
applying (X, Y)-partitions to a set family

A, B}, {C, D})-partiti
[({ B o I%@\
{} (A}, {Blpml-=({A, B}

] €le ’ CLC €
/ \ CgD, C} {C} l {}
2 3 3 2 )
/\ /\ } !
B A D C DIC| |[e|A]| [Ble]| |IBI|A
viree ZSDD representing

f=1UA,B},{A,C}{B,C},{C,D}}
39



Cardinality constraint: at most k

Input: vtree T, non-negative integer k Similar results hold for
Output: a ZSDD representing the family of sets| “atleastk’
with at most k elements

. If we define g(v, k) :={SCEW) | |S| <k},

we can show a similar equation

as "exactly k™ constraint
k

gv. k) =[] (80i) U gk — i)

i=0
. However, this equation is not
an (E0Y, E(vh))-partition
because the primes are not exclusive

. For i< j, we have g(v,i) C g(v,j)

40



Cardinality constraint: at most k

Input: vtree T, non-negative integer k

Similar results hold for

Output: a ZSDD representing the family of sets| “atleastk’

with at most k elements

Definition

. If we define g(v, k) :={SCEW) | |S| <k}, f, k) ={SCEW)|I|S|=k)

we can show a similar equation

Use f instead of g

as "exactly k™ constraint
e fO D)

g, k) = | (okay u g0k — i)
i=0

. However, this equation is not
an (E0Y, E(vh))-partition

1 for the primes

. By Combining the recursive formulas

for f and g, we can construct
a desired ZSDD

. The size of the output ZSDD is

O(|E|k*) like “exactly k” constraint

because the primes are not exclusive

. For i< j, we have g(v,i) C g(v,j)

41



Result: max. deg. < 3

Compilation time (ms) Size
instance V| |E] TD Z(b) Z(v) TD Z(b) Z(v)
att48 48 130 2392 15791 22576 | 564163 1408493 994667
berlin52 52 145 7478 - 535530 | 2727435 - 11561690
eilb1 51 142 17003 - 445662 | 3283534 - 14446615
grafo10106 | 100 119 14 3628 37 1565 1162 2504
grafo10124 | 100 139 | 186539 - 139582 | 1625041 - 589765
grafol0153 | 100 136 | 135821 - 10989 | 668892 - 51571
grafol0184 | 100 140 | 139648 - 398498 | 351873 - 212686
grafo10223 | 100 135 14332 - 18953 | 427096 - 115327

. For most graphs, TD was faster and memory-saving than Z(b) and Z(v)
. For grafo(10124|10153), Z(v) was better than TD

. Time: TD was up to 259 (resp., /1) times faster than Z(b) (resp., Z(v))

. Size: TD was up to 5.5 (resp., 4.4) times smaller than Z(b) (resp., Z(v))
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