
Variable Shift SDD: A More Succinct
Sentential Decision Diagram

Kengo Nakamura (NTT)
Shuhei Denzumi (The University of Tokyo)
Masaaki Nishino (NTT)

18th Symposium on Experimental Algorithms (SEA2020)
2020/6/18 @ online (Catania, Italy)

• Introduction
• Related works
• SDD
• VS-SDD and its property
• Experiments
• Conclusion

�

Contents

!: #$%&, !()*& + → #$%&, !()*&
Input: - Boolean values, Output: a Boolean value

There are useful queries for Boolean function:
• Model count: How many patterns of input make output

true?
• Equivalency: Are given two Boolean functions equivalent?

etc.

However, these queries are difficult to solve
Ex.) Using truth table, they take . 2+ time

�

Boolean function

0 1 2 3
false false false true
false false true false
false true false false
false true true false
true false false true
true false true false
true true false true
true true true true

Truth table

4 ∨ 67 ∧ 7 ∨ ̅:

Directed Acyclic Graph (DAG) representation of Boolean function
• Size of OBDD is generally exponential, but is significantly

smaller than !" for many practical cases
• OBDD supports many queries in polytime w.r.t. OBDD size

– Model count, Equivalency, etc.

�

Ordered Binary Decision Diagram (OBDD) [Bryant ’86]

A

B B

C C

D

⊥ T

$ ∧ & ∨ & ∧ (
∨ (∧)

OBDD

OBDDs support Apply operation in ! " # time
– Input: Two OBDDs $, & and binary operator ∘

• conjunction(∧), disjunction(∨), etc.
– Output: OBDD representing * ∘ +

• $ & represents * + resp.

Fundamental in
• constructing OBDD representing any Boolean function
• supporting useful queries

�

OBDD and Apply operation [Bryant ’86]

A

B B

C C

D

⊥ T

B

C

⊥ T

A

B

C

D

⊥ T

∨

2∧3 ∨ 4 ∧ 5 3 ∧ 4

2 ∧ 3 ∨ 3 ∧ 4
∨ 4 ∧ 5

Size of $

• DAG representation of Boolean function
• Generalization of OBDD structure

• Tighter bound on size than OBDD
– In some cases, SDD can make size exponentially

smaller than OBDD [Bova ’16]

• Supporting useful queries in polytime w.r.t. SDD size
• Supporting Apply operation in ! " # time

�

Sentential Decision Diagram (SDD) [Darwiche ’11]

$ ∧ & ∨ & ∧ (
∨ (∧)

Input: Two SDDs *, , and oper. ∘
Output: SDD representing . ∘ /

3

1

B ⊥
1

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B

SDD

�

Substructure sharing
One of the reason why OBDD/SDD is succinct:
• Boolean function is recursively decomposed into subfunctions that are also

represented by DAGs (substructures)
• When same subfunctions emerge, only one DAG is needed instead of having

multiple (identical) DAGs
… Share of substructure representing the same function

! ∧ #

1

A ¬A

3

B T ¬B

3

B ¬B

5

C T ⊥¬C

5

C D ⊥¬C

1

A ¬A

3

B T ¬B

3

B ¬B

5

C T ⊥¬C

5

C D ⊥¬C

5

C D ⊥¬C

! ∧ #
! ∧ #

Can we share more substructures to achieve more succinct
representation? -> Variable Shift SDD
… SDD-based representation of Boolean function
• VS-SDD can share substructures of subfunctions that are

equivalent under specific type of variable substitution
– Ex.) ! ∧ # can be obtained from $ ∧ % by substituting
$ with ! and % with #

• Representing Boolean function of substructure is
dependent on the path from root to it

Typical example of emerging such sets of subfunctions: modeling
time-evolving systems;

�

Proposal: Variable Shift SDD (VS-SDD)

1

1 ⊥ 1 2 ⊥

T6
1 41

¬2

¬2

¬1 ¬1

$ ∧ % ∨ % ∧ !
∨ ! ∧ #

VS-SDD
! ∧ #

$ ∧ %

Features:
• VS-SDD is never larger than SDD of the same function

– There exists a class of function for which VS-SDD is
exponentially smaller than SDD

• VS-SDD supports many useful queries as SDD does
– Supports Apply operation in ! " # time

VS-SDDs incur no additional overhead over SDDs while
being potentially smaller than SDDs

�

Proposal: Variable Shift SDD (VS-SDD)

1

1 ⊥ 1 2 ⊥

T6
1 41

¬2

¬2

¬1 ¬1

% ∧ ' ∨ ' ∧)
∨) ∧ *

VS-SDD
) ∧ *

% ∧ '

Input: Two VS-SDDs +, - and oper. ∘
Output: VS-SDD representing / ∘ 0

• Introduction
• Related works
• SDD
• VS-SDD and its property
• Experiments
• Conclusion

��

Contents

Attempts to share substructures representing “equivalent”
Boolean functions up to conversion

For OBDDs:
• Attributed edge [Madre & Billon ’88]

• Complement edge [Minato et al. ’90] … up to taking negation
– Solvability of useful operations is not considered

• ↑ΔBDD [Anuchitanukul et al. ’95] … up to “shifting” of variables
– Operation like Apply is supported, but its time complexity

is not polynomial of DAG sizes

��

Related works

" # ↔ ¬"(#)

" (), (+, (,
↔ "((-, (., (/)

For other DAG structures:
• Sym-DDG/Sym-FBDD [Bart et al. ’14] … up to any variable substitution

– Based on DDG [Fragier & Marquis ’06] and FBDD [Gergov & Meinel ’94]

– Fail to support some important operations such as Apply and
Conditioning, as the based structures do

For SDDs:
• No such previous study is known
• VS-SDD cannot be obtained by straightforward application of

techniques for OBDDs (like ↑ΔBDD)

��

Related works " #$, #&, #'
↔ "(#*, #+, #,)

• Introduction
• Related works
• SDD
• VS-SDD and its property
• Experiments
• Conclusion

��

Contents

SDD = Boolean circuit with structured decomposability and strong determinism
• Represents Boolean function by recursive application of OR and AND

– OR gate corresponds to circle node
– AND gate corresponds to box pair

��

SDD: Boolean circuit view

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B
C true ¬B

B ¬A ¬B false B A ¬B false D C ¬D false

SDD

Circuit

• Decomposable: for each AND gate, used variables are non-overlapping for any
two inputs of it

��

Decomposability

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B
C true ¬B

B ¬A ¬B false B A ¬B false D C ¬D false

SDD

Circuit

Decomposable circuit whose decomposition of variables is structured with vtree
• Vtree: full binary tree whose leaves are labeled with variables
• Structured decomposable (given vtree !): for each AND gate, it has two inputs

", $ and there is an internal node in ! s.t. used variables of " $ are all left
(right resp.) descendants

��

Vtree and structured decomposability

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B
C true ¬B

B ¬A ¬B false B A ¬B false D C ¬D false

B A CD

1

2 5

3 4 6 7

SDD

Circuit
vtree

For structured decomposable Boolean circuits:
• Strongly deterministic: for each OR gate, let !" be a Boolean function of the

left input of #-th child AND gate. Then, !" ∧ !% = '()*+ # ≠ - holds.

Due to structured decomposability and strong determinism, SDD supports
polytime Apply and has preferable properties such as canonicity (uniqueness)

��

Strong determinism

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B
C true ¬B

B ¬A ¬B false B A ¬B false D C ¬D false

B A CD

1

2 5

3 4 6 7

!/ = ¬1 ∧ 2

!3 = 1 ∧ 2

!4 = ¬2
SDD

Circuit
vtree

Seeing SDD as data structure representing Boolean function (given vtree)
• OR gate of circuit is represented as decomposition node (circle)

– It has corresponding vtree node called respecting node
• Bottom literal (constant) of circuit is represented as literal (constant resp.) node
• Size of SDD is defined as sum of #(inputs) of all OR gates

��

SDD: structure and respecting vtree node

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B

B A CD

1

2 5

3 4 6 7

¬# ∧ % # ∧ % & ∧ '

Decomposition node
with ID of respecting

vtree node
SDDvtree

Literal node
Constant node

• Introduction
• Related works
• SDD
• VS-SDD and its property
• Experiments
• Conclusion

��

Contents

Equivalent substructures (except for labels) emerges if:

• their respecting vtrees are identical (same shape) except for labels

• their representing functions are equivalent under variable substitution

induced from vtree isomorphism

��

Observation

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B

B A CD

1

2 5

3 4 6 7

" ∧ $ % ∧ &

Ex.) SDD representing ' = " ∧ $ ∨ $ ∧ % ∨ % ∧ &
• Vtrees rooted at 2 and 5 are identical

– Exchanged by following substitution: $ ↔ &, " ↔ %
• " ∧ $ and % ∧ & are equivalent under above substitution

-> Bottom-middle and bottom-right nodes have same shape

• SDD retains respecting vtree node (ID) of each
decomposition and literal explicitly

-> Substructures representing Boolean functions with
different variables cannot be shared

• VS-SDD retains it differentially in edges
… It is represented as sum of numbers from root to
decomposition/literal node

• To facilitate this idea, vtree nodes are numbered
following preorder traversal of vtree

��

VS-SDD: key idea

1

2

B ⊥
2

B A ⊥
5

D C ⊥

TC

¬A ¬B ¬B ¬D

¬B

1

1 ⊥ 1 2 ⊥

T6
1 41

¬2

¬2

¬1 ¬1

B A CD

1

2 5

3 4 6 7

vtree

SDD

VS-SDD

=1+43=1+1+1

��

VS-SDD: example

B A CD

1

2 5

3 4 6 7

1

1 ⊥ 1 2 ⊥

T6
1 41

¬2

¬2

¬1 ¬1

Given vtree, VS-SDD is also data structure to represent Boolean function
• Based on SDD structure
• Respecting vtree node ID of node is retained by the sum of offset and the

numbers from root to it

Ex.) VS-SDD representing " = $ ∧ & ∨ & ∧ (∨ (∧)
Marked substructure represents $ ∧ & when traversing yellow path, and (∧) when
traversing purple path

VS-SDD
vtree

Offset

• The size of VS-SDD is not larger than its SDD counterpart
• There is a class of function for which VS-SDD is exponentially smaller than SDD
Ex.) Boolean function with high symmetry
• Attach a variable for each edge of complete binary tree of depth !
• Consider a Boolean function that evaluates "#$% iff the edges corresponding to "#$%

variables constitute a matching

– SDD size is & '(given any vtree
– VS-SDD size is) (given vtree with recursive structure

• For ! = 14, SDD size is 278377 while VS-SDD size is only 259

��

Size of VS-SDD

Properties:
• VS-SDDs have canonicity (under some assumption), as SDDs do

– Given vtree, there is unique VS-SDD for a Boolean function

Operations:
• VS-SDDs support Apply operation in ! " # time
• Useful queries listed in [Darwiche & Marquis ’02] that are supported in polytime by

SDDs are also supported in polytime by VS-SDDs
– Including model count, equivalency, …

��

Other properties and operations of VS-SDD

• Introduction
• Related works
• SDD
• VS-SDD and its property
• Experiments
• Conclusion

��

Contents

Evaluating how much our approach reduces the DAG size
• For benchmark Boolean functions (in CNF form), we compare the sizes of SDD

and VS-SDD, given the same vtree
– Vtree is generated by SDD package version 2.0 [Choi & Darwiche ’18] with

balanced initial vtree

… Meaning that vtree is searched to suit for SDDs

• Used benchmarks:

– Planning dataset (used as benchmark for Sym-DDG [Bart et al. ’14])

– N-queens problem (used as benchmark for ZDD [Minato ’93])
– Grid matching enumeration

• Problems in which SDD compilation took more than 10 minutes are omitted

• Environment: 64-bit macOS, Intel Core i7@2.5GHz, 16GB RAM, Language: C++
��

Experiment

Given: state variables (Boolean) !", … , !%, set of actions &", … , &'
• Action changes assignment of state variables, depending on current assignment
• Given initial and goal assignments, we want to find out a sequence of actions

that maps initial assignment to goal assignment
Modeling this as a Boolean function of following variables, it exhibits high symmetry
• !(,) : !) of timestamp * = 0,… , -
• &(,. : whether action &. is performed at timestamp * = 1,… , -
Ex.) Sokoban puzzle
• Player wants to move boxes to storage by pushing box
• Player can only push box when the square next to box is empty
* In experiment, more simple planning problems are used

��

Planning dataset

• !-queens puzzle
… Place " queens on "×" chessboard s.t. no two queens
attack each other
– Associate variable for each square, and consider

function that evaluates $%&' iff constituting solution of
"-queens puzzle

• Matching enumeration on graph [Kawahara et al. ’17]

– Associate variable for each edge, and consider function
that evaluates $%&' iff constituting matching

… For grid graphs, such function exhibits symmetry

��

Other datasets

��

Results
Planning dataset (Suffix “_t!” stands for " = !):
• VS-SDD reduces the sizes to around 60-80% of

original SDD
– This compression ratio is competitive to

(or for some cases better than) that of
Sym-DDG compared to DDG

Many nodes representing substitution-equivalent
functions are found among bottom nodes of SDD,
yielding substantial size decrease of VS-SDD

SDD size
VS-SDD size

��

Results
Other datasets:
• N-queens data exhibits better compression ratios
• Matching data does not fit to VS-SDD

Due to the asymmetry in strong determinism …?

• Introduction
• Related works
• SDD
• VS-SDD and its property
• Experiments
• Conclusion

��

Contents

• VS-SDD represents Boolean function succinctly as OBDD and SDD do
• VS-SDDs incur no additional overhead over SDDs while being potentially

smaller than SDDs
• Experiments show that VS-SDD effectively captures the symmetries of

functions especially for planning datasets

Future work:
• Suitable vtree search for VS-SDD
• Top-down construction of VS-SDD

��

Conclusion

