
Indexing Compressed Text: a Tale of Time
and Space

Nicola Prezza, LUISS Guido Carli, Rome

18th Symposium on Experimental Algorithms, Catania, Italy, June 16-18,
2020

1

Introduction

In this talk I will present a brief history and state-of-the-art of the
problem of computing over compressed data.

We will look at solutions for a specific problem (text indexing). In
general, the question of the field is:

"I have a really good compressor that compresses my data X into an
archive C , with size(C)� size(X).

Can I perform computation directly over C , without decompressing it?"

2

In this talk I will present a brief history and state-of-the-art of the
problem of computing over compressed data.

We will look at solutions for a specific problem (text indexing). In
general, the question of the field is:

"I have a really good compressor that compresses my data X into an
archive C , with size(C)� size(X).

Can I perform computation directly over C , without decompressing it?"

2

In this talk I will present a brief history and state-of-the-art of the
problem of computing over compressed data.

We will look at solutions for a specific problem (text indexing). In
general, the question of the field is:

"I have a really good compressor that compresses my data X into an
archive C , with size(C)� size(X).

Can I perform computation directly over C , without decompressing it?"

2

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

In general, the solution depends on the compressor C and on the problem (i.e.
input and queries).

In this talk, we will see solutions for different C s and one particular problem:

Definition (text indexing) Given a string S ∈ Σn, build a data structure D(S)

that answers the following queries:

• Count the number occ of occurrences of a string P ∈ Σm, m ≤ n in S

• Locate the occ of occurrences of P in S

• Extract a text substring S [i , . . . , i + `− 1]

Additional constraint: D(S) should take space proportional to C (compressed).

3

Compressed text indexing

Example

S = A T A T A G A T A

1 2 3 4 5 6 7 8 9

• Count(ATA) = 3

• Locate(ATA) = {1, 3, 7}

• Extract(4,7) = "TAGA"

Note: because of the extract query, D(S) replaces S (we call it a self-index).

4

Entropy Compression

Zero-Order Empirical Entropy

At first, research focused on Shannon’s measure of text entropy.

In order to do so, we first need to adapt the definition to the empirical
character frequencies (we work on texts, not on character sources):

Definition (Zero-Order Empirical Entropy)

H0(S) =
∑
c∈Σ

occc
n

log2
n

occc

where occc = number of occurrences of character c in S .

Thm. nH0(S) bits are needed to represent a text using any encoding of the
alphabet’s characters into binary codes that only depend on the character’s
frequency.

5

Zero-Order Empirical Entropy

At first, research focused on Shannon’s measure of text entropy.

In order to do so, we first need to adapt the definition to the empirical
character frequencies (we work on texts, not on character sources):

Definition (Zero-Order Empirical Entropy)

H0(S) =
∑
c∈Σ

occc
n

log2
n

occc

where occc = number of occurrences of character c in S .

Thm. nH0(S) bits are needed to represent a text using any encoding of the
alphabet’s characters into binary codes that only depend on the character’s
frequency.

5

Zero-Order Empirical Entropy

At first, research focused on Shannon’s measure of text entropy.

In order to do so, we first need to adapt the definition to the empirical
character frequencies (we work on texts, not on character sources):

Definition (Zero-Order Empirical Entropy)

H0(S) =
∑
c∈Σ

occc
n

log2
n

occc

where occc = number of occurrences of character c in S .

Thm. nH0(S) bits are needed to represent a text using any encoding of the
alphabet’s characters into binary codes that only depend on the character’s
frequency.

5

High-Order Empirical Entropy

A more powerful notion clusters symbols by context.

Let SC = sting obtained by concatenating all characters that follow substring C

in S .

Example: in S = AAATAAGCT , SAA = ”ATG”

Definition (High-Order Empirical Entropy∗)

Hk =
∑
C∈Σk

|SC |
n
· H0(SC)

Intuition: weighted average of the contexts’ zero-order entropies.

∗From now on we will simply write Hk instead of Hk (S)

6

High-Order Empirical Entropy

A more powerful notion clusters symbols by context.

Let SC = sting obtained by concatenating all characters that follow substring C

in S .

Example: in S = AAATAAGCT , SAA = ”ATG”

Definition (High-Order Empirical Entropy∗)

Hk =
∑
C∈Σk

|SC |
n
· H0(SC)

Intuition: weighted average of the contexts’ zero-order entropies.

∗From now on we will simply write Hk instead of Hk (S)

6

High-Order Empirical Entropy

A more powerful notion clusters symbols by context.

Let SC = sting obtained by concatenating all characters that follow substring C

in S .

Example: in S = AAATAAGCT , SAA = ”ATG”

Definition (High-Order Empirical Entropy∗)

Hk =
∑
C∈Σk

|SC |
n
· H0(SC)

Intuition: weighted average of the contexts’ zero-order entropies.

∗From now on we will simply write Hk instead of Hk (S)

6

High-Order Empirical Entropy

Entropy compressors (e.g. Huffman, arithmetic) compress S into
nHk + o(n log σ) bits, for some k ≤ logσ n

∗ (σ = |Σ| = alphabet size)

On typical context-predictable texts, e.g. XML:

• nH0 is about 65% of n log σ.

• nH5 is about 10% of n log σ.

∗ We cannot do much better than that: Gagie [Inf. Proc. Letters, 2016] showed that for k ≥ logσ n, no
compressed representation can achieve a worst-case space bound of Θ(nHk) + o(n log σ)

7

Goal: build a text index taking O(nHk) + o(n log σ) bits of space and
supporting fast queries.

Classic solutions: suffix trees, suffix arrays. Fast, but use O(n log n)

bits of space, which could be two orders of magnitude larger than nHk .

Let’s see (in 1 slide!) what is and how to compress a suffix array

8

Goal: build a text index taking O(nHk) + o(n log σ) bits of space and
supporting fast queries.

Classic solutions: suffix trees, suffix arrays. Fast, but use O(n log n)

bits of space, which could be two orders of magnitude larger than nHk .

Let’s see (in 1 slide!) what is and how to compress a suffix array

8

Goal: build a text index taking O(nHk) + o(n log σ) bits of space and
supporting fast queries.

Classic solutions: suffix trees, suffix arrays. Fast, but use O(n log n)

bits of space, which could be two orders of magnitude larger than nHk .

Let’s see (in 1 slide!) what is and how to compress a suffix array

8

Input $-terminated text ($ ≺lex c for all c ∈ Σ)

S = A T A T A G A T $

1 2 3 4 5 6 7 8 9

• Note: ψ is increasing by letter (color).

• Why? applying ψ = removing the first char from a suffix. Preserves
relative ordering of suffixes starting with same letter

• Store ∆[i] = ψ[i]− ψ[i − 1] (delta-encoding): nH0 + O(n) bits, O(1)

random access.

9

Input $-terminated text ($ ≺lex c for all c ∈ Σ)

S = A T A T A G A T $

1 2 3 4 5 6 7 8 9

Suffix Array: sort positions by lexicographic order of suffixes:

SA = 9 5 7 3 1 6 8 4 2
$ A A A A G T T T

G T T T A $ A A

A $ A A T G T

T G T $ A A

$ A A T G

T G $ A

$ A T

T $

$

Note: occurrences of a pattern form a range: count/locate = binary search.

• Note: ψ is increasing by letter (color).

• Why? applying ψ = removing the first char from a suffix. Preserves
relative ordering of suffixes starting with same letter

• Store ∆[i] = ψ[i]− ψ[i − 1] (delta-encoding): nH0 + O(n) bits, O(1)

random access.

9

Input $-terminated text ($ ≺lex c for all c ∈ Σ)

S = A T A T A G A T $

1 2 3 4 5 6 7 8 9

ψ Array: ψ[i] = SA−1[SA[i] + 1] ∗

SA = 9 5 7 3 1 6 8 4 2
ψ = 5 6 7 8 9 3 1 2 4

1 2 3 4 5 6 7 8 9

• Note: ψ is increasing by letter (color).

• Why? applying ψ = removing the first char from a suffix. Preserves
relative ordering of suffixes starting with same letter

• Store ∆[i] = ψ[i]− ψ[i − 1] (delta-encoding): nH0 + O(n) bits, O(1)

random access.

∗ except ψ[1] = SA−1[1]
9

Input $-terminated text ($ ≺lex c for all c ∈ Σ)

S = A T A T A G A T $

1 2 3 4 5 6 7 8 9

ψ Array: ψ[i] = SA−1[SA[i] + 1] ∗

SA = 9 5 7 3 1 6 8 4 2
ψ = 5 6 7 8 9 3 1 2 4

1 2 3 4 5 6 7 8 9

• Note: ψ is increasing by letter (color).

• Why? applying ψ = removing the first char from a suffix. Preserves
relative ordering of suffixes starting with same letter

• Store ∆[i] = ψ[i]− ψ[i − 1] (delta-encoding): nH0 + O(n) bits, O(1)

random access.

9

Input $-terminated text ($ ≺lex c for all c ∈ Σ)

S = A T A T A G A T $

1 2 3 4 5 6 7 8 9

ψ Array: ψ[i] = SA−1[SA[i] + 1] ∗

SA = 9 5 7 3 1 6 8 4 2
ψ = 5 6 7 8 9 3 1 2 4

1 2 3 4 5 6 7 8 9

• Note: ψ is increasing by letter (color).

• Why? applying ψ = removing the first char from a suffix. Preserves
relative ordering of suffixes starting with same letter

• Store ∆[i] = ψ[i]− ψ[i − 1] (delta-encoding): nH0 + O(n) bits, O(1)

random access.

9

Input $-terminated text ($ ≺lex c for all c ∈ Σ)

S = A T A T A G A T $

1 2 3 4 5 6 7 8 9

ψ Array: ψ[i] = SA−1[SA[i] + 1] ∗

SA = 9 5 7 3 1 6 8 4 2
ψ = 5 6 7 8 9 3 1 2 4

1 2 3 4 5 6 7 8 9

• Note: ψ is increasing by letter (color).

• Why? applying ψ = removing the first char from a suffix. Preserves
relative ordering of suffixes starting with same letter

• Store ∆[i] = ψ[i]− ψ[i − 1] (delta-encoding): nH0 + O(n) bits, O(1)

random access.

9

Extract text using ψ

Let’s see how to extract the suffix starting in position SA[5].
We store: ψ and first letters (underlined). Space: nH0 + O(n) bits.

1 2 3 4 5 6 7 8 9
ψ = 5 6 7 8 9 3 1 2 4

$ A A A A G T T T

G T T T A $ A A

A $ A A T G T

T G T $ A A

$ A A T G

T G $ A

$ A T

T $

$

Extracted: A

10

Extract text using ψ

Let’s see how to extract the suffix starting in position SA[5].
We store: ψ and first letters (underlined). Space: nH0 + O(n) bits.

1 2 3 4 5 6 7 8 9
ψ = 5 6 7 8 9 3 1 2 4

$ A A A A G T T T

G T T T A $ A A

A $ A A T G T

T G T $ A A

$ A A T G

T G $ A

$ A T

T $

$

Extracted: AT

11

Extract text using ψ

Let’s see how to extract the suffix starting in position SA[5].
We store: ψ and first letters (underlined). Space: nH0 + O(n) bits.

1 2 3 4 5 6 7 8 9
ψ = 5 6 7 8 9 3 1 2 4

$ A A A A G T T T

G T T T A $ A A

A $ A A T G T

T G T $ A A

$ A A T G

T G $ A

$ A T

T $

$

Extracted: ATA

12

Extract text using ψ

Let’s see how to extract the suffix starting in position SA[5].
We store: ψ and first letters (underlined). Space: nH0 + O(n) bits.

1 2 3 4 5 6 7 8 9
ψ = 5 6 7 8 9 3 1 2 4

$ A A A A G T T T

G T T T A $ A A

A $ A A T G T

T G T $ A A

$ A A T G

T G $ A

$ A T

T $

$

Extracted: ATAT

13

The Compressed Suffix Array

The range of suffixes prefixed by a pattern P can be found with binary
search using ψ.

By sampling the suffix array every O(log n) text positions, we obtain a
Compressed Suffix Array.

14

The Compressed Suffix Array

The range of suffixes prefixed by a pattern P can be found with binary
search using ψ.

By sampling the suffix array every O(log n) text positions, we obtain a
Compressed Suffix Array.

14

The Compressed Suffix Array

Trade-offs (later slightly improved):

• Space: nH0 + O(n) bits.

• Count: O(m log n).

• Locate: O((m + occ) log n) (needs a sampling of SA)

• Extract: O(`+ log n) (needs a sampling of SA−1)

First described in:

Grossi, Vitter. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. In STOC 2000 (pp. 397-406).

15

High-Order Compression

We achieved nH0. What about nHk?

We use an apparently different (but actually equivalent) idea: the
Burrows-Wheeler Transform (BWT, Burrows, Wheeler, 1994)

16

High-Order Compression

We achieved nH0. What about nHk?

We use an apparently different (but actually equivalent) idea: the
Burrows-Wheeler Transform (BWT, Burrows, Wheeler, 1994)

16

Burrows-Wheeler Transform

Sort all circular permutations of S = mississippi$. BWT = last column.

F L
$ m i s s i s s i p p i
i $ m i s s i s s i p p
i p p i $ m i s s i s s
i s s i p p i $ m i s s
i s s i s s i p p i $ m
m i s s i s s i p p i $
p i $ m i s s i s s i p
p p i $ m i s s i s s i
s i p p i $ m i s s i s
s i s s i p p i $ m i s
s s i p p i $ m i s s i
s s i s s i p p i $ m i

Explicitly store only first and last columns.

17

LF property

LF property. Let c ∈ Σ. Then, the i-th occurrence of c in L corresponds to the
i-th occurrence of c in F (i.e. same position in T).

F Unknown L

$ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $
p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

s sissippi$m i

Red arrows: LF function (only character ’i’ is shown)
Black arrows: implicit backward links (backward navigation of T)

18

Backward search

Backward search of the pattern ′si′

F Unknown L

$ mississipp i

fr ⇒ i $mississip p

i ppi$missis s

i ssippi$mis s

lr ⇒ i ssissippi$ m

m ississippi $
p i$mississi p

p pi$mississ i

fr ⇒ s ippi$missi s

lr ⇒ s issippi$mi s

s sippi$miss i

s sissippi$m i

Step 1 :
rows prefixed by ′i′





Step 2 :
rows prefixed by ′si′

{

Find first and last ′s′

and apply LF mapping

19

Burrows-Wheeler Transform

Finally, note: in BWT, characters are partitioned by context (example: k = 2)

F L
$ m i s s i s s i p p i
i $ m i s s i s s i p p
i p p i $ m i s s i s s
i s s i p p i $ m i s s
i s s i s s i p p i $ m
m i s s i s s i p p i $
p i $ m i s s i s s i p
p p i $ m i s s i s s i
s i p p i $ m i s s i s
s i s s i p p i $ m i s
s s i p p i $ m i s s i
s s i s s i p p i $ m i

We can compress each context independently using a zero-order compressor
(e.g. Huffman) and obtain nHk

20

The FM index

This structure is known as FM-index. Simplified trade-offs (later improved):

• Space: nHk + o(n log σ) bits for k = α logσ n − 1, 0 < α < 1.

• Count: O(m log σ).

• Locate: O(m log σ + occ log1+ε n) (needs a sampling of SA)

• Extract: O(` log σ + log1+ε n) (needs a sampling of SA−1)

First described (with slightly different trade-offs) in:

Ferragina, Manzini. Opportunistic data structures with applications. In FOCS
2000, Nov 12 (pp. 390-398).

Huge impact in medicine and bioinformatics: if you get your own genome
sequenced, it will be analyzed using software based on the FM-index.

21

The FM index

This structure is known as FM-index. Simplified trade-offs (later improved):

• Space: nHk + o(n log σ) bits for k = α logσ n − 1, 0 < α < 1.

• Count: O(m log σ).

• Locate: O(m log σ + occ log1+ε n) (needs a sampling of SA)

• Extract: O(` log σ + log1+ε n) (needs a sampling of SA−1)

First described (with slightly different trade-offs) in:

Ferragina, Manzini. Opportunistic data structures with applications. In FOCS
2000, Nov 12 (pp. 390-398).

Huge impact in medicine and bioinformatics: if you get your own genome
sequenced, it will be analyzed using software based on the FM-index.

21

New data

The compressed indexing revolution happened in the early 2000s.

Then, the data changed!

The last decade has been characterized by an explosion in the production
of highly repetitive massive data

• DNA repositories (1000genomes project, sequencing,...)

• Versioned repositories (wikipedia, github, ...)

22

New data

The compressed indexing revolution happened in the early 2000s.

Then, the data changed!

The last decade has been characterized by an explosion in the production
of highly repetitive massive data

• DNA repositories (1000genomes project, sequencing,...)

• Versioned repositories (wikipedia, github, ...)

22

New data

The compressed indexing revolution happened in the early 2000s.

Then, the data changed!

The last decade has been characterized by an explosion in the production
of highly repetitive massive data

• DNA repositories (1000genomes project, sequencing,...)

• Versioned repositories (wikipedia, github, ...)

22

New data

The compressed indexing revolution happened in the early 2000s.

Then, the data changed!

The last decade has been characterized by an explosion in the production
of highly repetitive massive data

• DNA repositories (1000genomes project, sequencing,...)

• Versioned repositories (wikipedia, github, ...)

22

New data

The compressed indexing revolution happened in the early 2000s.

Then, the data changed!

The last decade has been characterized by an explosion in the production
of highly repetitive massive data

• DNA repositories (1000genomes project, sequencing,...)

• Versioned repositories (wikipedia, github, ...)

22

Entropy is no longer a good model

Limitations of entropy became apparent: being memory-less, entropy is
insensitive to long repetitions (remember: context length k is small!).

• H0(banana) ≈ 1.45

• H0(bananabanana) ≈ 1.45

• H0(bananabananabanana) ≈ 1.45

• ...

23

Entropy is no longer a good model

Limitations of entropy became apparent: being memory-less, entropy is
insensitive to long repetitions (remember: context length k is small!).

• H0(banana) ≈ 1.45

• H0(bananabanana) ≈ 1.45

• H0(bananabananabanana) ≈ 1.45

• ...

23

Entropy is no longer a good model

Limitations of entropy became apparent: being memory-less, entropy is
insensitive to long repetitions (remember: context length k is small!).

• H0(banana) ≈ 1.45

• H0(bananabanana) ≈ 1.45

• H0(bananabananabanana) ≈ 1.45

• ...

23

Beating entropy

As a result, S3 = bananabananabanana compresses to
|S3|H(S3) = 3 · |S|H(S) bits ...

Can you come up with a better compressor?

compress


 = × 5

|S |H(S) +O(log t)� t · |S |H(S) bits.

24

Beating entropy

As a result, S3 = bananabananabanana compresses to
|S3|H(S3) = 3 · |S|H(S) bits ...

Can you come up with a better compressor?

compress


 = × 5

|S |H(S) +O(log t)� t · |S |H(S) bits.

24

Beating entropy

As a result, S3 = bananabananabanana compresses to
|S3|H(S3) = 3 · |S|H(S) bits ...

Can you come up with a better compressor?

compress


 = × 5

|S |H(S) +O(log t)� t · |S |H(S) bits.

24

Beating entropy

As a result, S3 = bananabananabanana compresses to
|S3|H(S3) = 3 · |S|H(S) bits ...

Can you come up with a better compressor?

compress


 = × 5

|S |H(S) +O(log t)� t · |S |H(S) bits.

24

Dictionary Compression

Ideal compressor: Kolmogorov complexity.

Non computable/approximable!

⇒ We need to fix a text model: exact repetitions

A different generation of compressors comes at rescue: Dictionary compressors

General idea:

• Break S into substrings belonging to some dictionary D

• Represent S as pointers to D

• Usually, D is the set of substrings of S (self-referential compression)

25

Ideal compressor: Kolmogorov complexity. Non computable/approximable!

⇒ We need to fix a text model: exact repetitions

A different generation of compressors comes at rescue: Dictionary compressors

General idea:

• Break S into substrings belonging to some dictionary D

• Represent S as pointers to D

• Usually, D is the set of substrings of S (self-referential compression)

25

Ideal compressor: Kolmogorov complexity. Non computable/approximable!

⇒ We need to fix a text model: exact repetitions

A different generation of compressors comes at rescue: Dictionary compressors

General idea:

• Break S into substrings belonging to some dictionary D

• Represent S as pointers to D

• Usually, D is the set of substrings of S (self-referential compression)

25

Ideal compressor: Kolmogorov complexity. Non computable/approximable!

⇒ We need to fix a text model: exact repetitions

A different generation of compressors comes at rescue: Dictionary compressors

General idea:

• Break S into substrings belonging to some dictionary D

• Represent S as pointers to D

• Usually, D is the set of substrings of S (self-referential compression)

25

Lempel-Ziv (LZ77, LZ78)

LZ77 (Lempel-Ziv, 1977) — 7-zip, winzip

• LZ77 = Greedy partition of text into shortest factors not appearing
before: a|n|na|and|nan|ab|anan|anas|andb|ananas

• To encode each phrase: just a pointer back, phrase length, and 1
character: |LZ77| = O(# of phrases)

• Compresses orders of magnitude better than entropy on repetitive texts

26

Lempel-Ziv (LZ77, LZ78)

LZ77 (Lempel-Ziv, 1977) — 7-zip, winzip

• LZ77 = Greedy partition of text into shortest factors not appearing
before: a|n|na|and|nan|ab|anan|anas|andb|ananas

• To encode each phrase: just a pointer back, phrase length, and 1
character: |LZ77| = O(# of phrases)

• Compresses orders of magnitude better than entropy on repetitive texts

26

Lempel-Ziv (LZ77, LZ78)

LZ77 (Lempel-Ziv, 1977) — 7-zip, winzip

• LZ77 = Greedy partition of text into shortest factors not appearing
before: a|n|na|and|nan|ab|anan|anas|andb|ananas

• To encode each phrase: just a pointer back, phrase length, and 1
character: |LZ77| = O(# of phrases)

• Compresses orders of magnitude better than entropy on repetitive texts

26

Run-Length Burrows-Wheeler Transform (RLBWT)

Run-length BWT — bzip2

Input: S = BANANA

1. Build the matrix
of all circular
permutations

B A N A N A $
A N A N A $ B
N A N A $ B A
A N A $ B A N
N A $ B A N A
A $ B A N A N
$ B A N A N A

2. Sort the rows.
BWT = last column.

BWT

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

3. Apply run-length
compression to
BWT = ANNB$AA

Output: RLBWT = (1,A), (2,N), (1,B), (1,$), (2,A)

27

Run-Length Burrows-Wheeler Transform (RLBWT)

Run-length BWT — bzip2

Input: S = BANANA

1. Build the matrix
of all circular
permutations

B A N A N A $
A N A N A $ B
N A N A $ B A
A N A $ B A N
N A $ B A N A
A $ B A N A N
$ B A N A N A

2. Sort the rows.
BWT = last column.

BWT

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

3. Apply run-length
compression to
BWT = ANNB$AA

Output: RLBWT = (1,A), (2,N), (1,B), (1,$), (2,A)

27

Run-Length Burrows-Wheeler Transform (RLBWT)

Run-length BWT — bzip2

Input: S = BANANA

1. Build the matrix
of all circular
permutations

B A N A N A $
A N A N A $ B
N A N A $ B A
A N A $ B A N
N A $ B A N A
A $ B A N A N
$ B A N A N A

2. Sort the rows.
BWT = last column.

BWT

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

3. Apply run-length
compression to
BWT = ANNB$AA

Output: RLBWT = (1,A), (2,N), (1,B), (1,$), (2,A)

27

Run-Length Burrows-Wheeler Transform (RLBWT)

Run-length BWT — bzip2

Input: S = BANANA

1. Build the matrix
of all circular
permutations

B A N A N A $
A N A N A $ B
N A N A $ B A
A N A $ B A N
N A $ B A N A
A $ B A N A N
$ B A N A N A

2. Sort the rows.
BWT = last column.

BWT

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

3. Apply run-length
compression to
BWT = ANNB$AA

Output: RLBWT = (1,A), (2,N), (1,B), (1,$), (2,A)

27

Highly repetitive text collections

How do these compressors perform in practice?

Real-case example

• All revisions of en.wikipedia.org/wiki/Albert_Einstein

• Uncompressed: 456 MB

• nH5 ≈ 110MB. 4x compression rate.

• |RLBWT (T)| ≈ 544KB. 840x compression rate.

• |LZ77(T)| ≈ 310KB. 1400x compression rate.

28

en.wikipedia.org/wiki/Albert_Einstein

Highly repetitive text collections

How do these compressors perform in practice?

Real-case example

• All revisions of en.wikipedia.org/wiki/Albert_Einstein

• Uncompressed: 456 MB

• nH5 ≈ 110MB. 4x compression rate.

• |RLBWT (T)| ≈ 544KB. 840x compression rate.

• |LZ77(T)| ≈ 310KB. 1400x compression rate.

28

en.wikipedia.org/wiki/Albert_Einstein

Highly repetitive text collections

How do these compressors perform in practice?

Real-case example

• All revisions of en.wikipedia.org/wiki/Albert_Einstein

• Uncompressed: 456 MB

• nH5 ≈ 110MB. 4x compression rate.

• |RLBWT (T)| ≈ 544KB. 840x compression rate.

• |LZ77(T)| ≈ 310KB. 1400x compression rate.

28

en.wikipedia.org/wiki/Albert_Einstein

Highly repetitive text collections

How do these compressors perform in practice?

Real-case example

• All revisions of en.wikipedia.org/wiki/Albert_Einstein

• Uncompressed: 456 MB

• nH5 ≈ 110MB. 4x compression rate.

• |RLBWT (T)| ≈ 544KB. 840x compression rate.

• |LZ77(T)| ≈ 310KB. 1400x compression rate.

28

en.wikipedia.org/wiki/Albert_Einstein

Highly repetitive text collections

How do these compressors perform in practice?

Real-case example

• All revisions of en.wikipedia.org/wiki/Albert_Einstein

• Uncompressed: 456 MB

• nH5 ≈ 110MB. 4x compression rate.

• |RLBWT (T)| ≈ 544KB. 840x compression rate.

• |LZ77(T)| ≈ 310KB. 1400x compression rate.

28

en.wikipedia.org/wiki/Albert_Einstein

Dictionary compressors

Known dictionary compressors (compressed size between parentheses):

1. RLBWT (r)
2. LZ77 (z)
3. macro schemes (b) = bidirectional LZ77 [Storer, Szymanski ’78]
4. SLPs (g) = context-free grammar generating S [Kieffer, Yang ’00]
5. RLSLPs (grl) = SLPs with run-length rules Z → A` [Nishimoto et al. ’16]
6. collage systems (c) = RLSLPs with substring operator [Kida et al. ’03]
7. word graphs (e) = automata accepting S ’s substrings [Blumer et al. ’87]

(3-6) NP-hard to optimize

Note the zoo of compressibility measures (we’ll come back to this later)

29

Can we build compressed indexes taking |RLBWT | or |LZ77| space?

Notation:

• r = number of equal-letter runs in the BWT

• z = number of phrases in the Lempel-Ziv parse

Note: while it can be proven that z , r are related to nHk , we don’t
actually want to do that: we will measure space complexity as a function
of z , r .

30

Can we build compressed indexes taking |RLBWT | or |LZ77| space?

Notation:

• r = number of equal-letter runs in the BWT

• z = number of phrases in the Lempel-Ziv parse

Note: while it can be proven that z , r are related to nHk , we don’t
actually want to do that: we will measure space complexity as a function
of z , r .

30

Can we build compressed indexes taking |RLBWT | or |LZ77| space?

Notation:

• r = number of equal-letter runs in the BWT

• z = number of phrases in the Lempel-Ziv parse

Note: while it can be proven that z , r are related to nHk , we don’t
actually want to do that: we will measure space complexity as a function
of z , r .

30

Can we build compressed indexes taking |RLBWT | or |LZ77| space?

Notation:

• r = number of equal-letter runs in the BWT

• z = number of phrases in the Lempel-Ziv parse

Note: while it can be proven that z , r are related to nHk , we don’t
actually want to do that: we will measure space complexity as a function
of z , r .

30

Given the success of Compressed Suffix Arrays, the first natural try has
been to run-length compress them.

31

The run-length FM index (RLFM-index)

2010: the Run-Length CSA (RLCSA)

name space (words/bits) Count Locate Extract
suffix tree (’73) O(n) words O(m) O(m + occ) O(`)

suffix array (’93) 2n words + text O(m) O(m + occ) O(`)

CSA (’00) nH0 + O(n) bits Õ(m) Õ(m + occ) Õ(`)

FM-index (’00) nHk + o(n log σ) bits Õ(m) Õ(m + occ) Õ(`)

RLCSA (’10) O(r + n/d) words Õ(m) Õ(m + occ · d) Õ(`+ d)

Mäkinen, Navarro, Sirén, and Välimäki. Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology, 2010

Issue: The trade-off d (sampling rate of the suffix array) makes the index
impractical on highly-repetitive texts (where r � n)

32

The run-length FM index (RLFM-index)

2010: the Run-Length CSA (RLCSA)

name space (words/bits) Count Locate Extract
suffix tree (’73) O(n) words O(m) O(m + occ) O(`)

suffix array (’93) 2n words + text O(m) O(m + occ) O(`)

CSA (’00) nH0 + O(n) bits Õ(m) Õ(m + occ) Õ(`)

FM-index (’00) nHk + o(n log σ) bits Õ(m) Õ(m + occ) Õ(`)

RLCSA (’10) O(r + n/d) words Õ(m) Õ(m + occ · d) Õ(`+ d)

Mäkinen, Navarro, Sirén, and Välimäki. Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology, 2010

Issue: The trade-off d (sampling rate of the suffix array) makes the index
impractical on highly-repetitive texts (where r � n)

32

LZ indexing

What about Lempel-Ziv indexing?

index compression space (words) locate time
KU-LZI[1] LZ78 O(z) + n Õ(m2 + occ)

NAV-LZI[2] LZ78 O(z) Õ(m3 + occ)

KN-LZI[3] LZ77 O(z) Õ(m2h + occ)

h ≤ n is the parse height. In practice small, but worst-case h = Θ(n)

[1] Kärkkäinen, Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string matching.
InProc. 3rd South American Workshop on String Processing (WSP’96)

[2] Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms. 2004 Mar
1;2(1):87-114.

[3] Kreft, Navarro. On compressing and indexing repetitive sequences. Theoretical Computer Science.
2013 Apr 29;483:115-33.

33

How do they work? geometric range search

Example: search splitted-pattern
←−
CA|
−→
C (to find all splitted occurrences, we have to try all possible splits)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
LZ78 = A | C | G | C G | A C | A C A | C A | C G G | T | G G | G T | $

$T
G
G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

A A
C
A
C
A
C
A
G
C
G
C
A

A
C
A
C
A
G
C
G
C
A

C
A

C
A
G
C
G
C
A

G
C
A

G
C
G
C
A

G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

T
G
G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

$

A

AC

ACA

C

CA

CG

CGG

G

GG

GT

T

1

2

3

5

7

15

16

18

20

10

12

34

Problems:

• Locate time quadratic in m

• These index cannot count (without locating)!

35

The problem has recently (2018) been solved going back to Run-Length CSAs:

Theorem [1] Let SA[l , . . . , r] be the suffix array range of a pattern P. We can
sample r positions of the suffix array (at BWT run-borders) such that:

1. We can return SA[l] in O(m log log n) time

2. Given SA[i], we can compute SA[i + 1] in O(log log n) time.

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in
BWT-runs Bounded Space. Journal of the ACM

36

The problem has recently (2018) been solved going back to Run-Length CSAs:

Theorem [1] Let SA[l , . . . , r] be the suffix array range of a pattern P. We can
sample r positions of the suffix array (at BWT run-borders) such that:

1. We can return SA[l] in O(m log log n) time

2. Given SA[i], we can compute SA[i + 1] in O(log log n) time.

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in
BWT-runs Bounded Space. Journal of the ACM

36

The problem has recently (2018) been solved going back to Run-Length CSAs:

Theorem [1] Let SA[l , . . . , r] be the suffix array range of a pattern P. We can
sample r positions of the suffix array (at BWT run-borders) such that:

1. We can return SA[l] in O(m log log n) time

2. Given SA[i], we can compute SA[i + 1] in O(log log n) time.

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in
BWT-runs Bounded Space. Journal of the ACM

36

The problem has recently (2018) been solved going back to Run-Length CSAs:

Theorem [1] Let SA[l , . . . , r] be the suffix array range of a pattern P. We can
sample r positions of the suffix array (at BWT run-borders) such that:

1. We can return SA[l] in O(m log log n) time

2. Given SA[i], we can compute SA[i + 1] in O(log log n) time.

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in
BWT-runs Bounded Space. Journal of the ACM

36

smaller, orders of magnitude faster (r-index): the right tool to index
thousands of genomes!

●

●

●

0 2 4 6 8 10 12

DNA

RSS (bits/symbol)

tim
e/

oc
c

(lo
g 1

0(
ns

))

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
●

●

●

0 2 4 6 8 10

2.0

2.5

3.0

3.5

4.0

4.5

5.0

boost

RSS (bits/symbol)

●

●

●

0 2 4 6 8 10

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

einstein

RSS (bits/symbol)

tim
e/

oc
c

(lo
g 1

0(
ns

))

●

●

●

0 2 4 6 8

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

world_leaders

RSS (bits/symbol)

●r−index rlcsa lzi cdawg slp hyb fmi−rrr fmi−suc 37

Exciting results:

• Index size for one human chromosome: 250 MB. 35 bps (bits per symbol).

• Index size for 1000 human chromosomes: 550 MB. 0.08 bps

• Faster than the FM-index.

38

Up-to-date history of compressed suffix arrays:

name space (words/bits) Count Locate Extract
suffix tree (’73) O(n) words O(m) O(m + occ) O(`)

suffix array (’93) 2n words + text O(m) O(m + occ) O(`)

CSA (’00) nH0 + O(n) bits Õ(m) Õ(m + occ) Õ(`)

FM-index (’00) nHk + o(n log σ) bits Õ(m) Õ(m + occ) Õ(`)

RLCSA (’10) O(r + n/d) words Õ(m) Õ(m + occ · d) Õ(`+ d)

r-index [1,2] (’18) O(r) words Õ(m) Õ(m + occ) O(`+ log(n/r))∗

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in
BWT-runs Bounded Space. Journal of the ACM

∗ only in space O(r log(n/r))

39

Current directions

What next?

• Put some order in the zoo of complexity measures:

• A definitive measure of "repetitiveness"
• Relations between existing complexity measures

• Universal (compressor-independent) data structures

• Generalizations: indexing labeled graphs/regular languages

40

What next?

• Put some order in the zoo of complexity measures:

• A definitive measure of "repetitiveness"
• Relations between existing complexity measures

• Universal (compressor-independent) data structures

• Generalizations: indexing labeled graphs/regular languages

40

What next?

• Put some order in the zoo of complexity measures:

• A definitive measure of "repetitiveness"
• Relations between existing complexity measures

• Universal (compressor-independent) data structures

• Generalizations: indexing labeled graphs/regular languages

40

What next?

• Put some order in the zoo of complexity measures:

• A definitive measure of "repetitiveness"
• Relations between existing complexity measures

• Universal (compressor-independent) data structures

• Generalizations: indexing labeled graphs/regular languages

40

Universal Compression

String Attractors

String attractors [1]: a tentative to describe all complexity measures under the
same framework. Observation:

• A repetitive string S has a small set of distinct substrings Q = {S [i ..j]}

• What if we fix a set of positions Γ ⊆ [1..|S |] such that every s ∈ Q
appears in S crossing some position of Γ?

We call Γ “string attractor”. Intuition: few
distinct substrings ⇒ small Γ.

[1] Kempa, P. At the roots of dictionary compression: String attractors. In STOC 2018.

41

String Attractors

String attractors [1]: a tentative to describe all complexity measures under the
same framework. Observation:

• A repetitive string S has a small set of distinct substrings Q = {S [i ..j]}

• What if we fix a set of positions Γ ⊆ [1..|S |] such that every s ∈ Q
appears in S crossing some position of Γ?

We call Γ “string attractor”. Intuition: few
distinct substrings ⇒ small Γ.

[1] Kempa, P. At the roots of dictionary compression: String attractors. In STOC 2018.

41

String Attractors

Example

S = CDABCCDABCCA Γ = {4, 7, 11, 12}

in this case, Γ is also the smallest attractor ... why?

42

String Attractors

Main results:

• Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
• |Γ| ≤ |dictionary compressors| ≤ O(|Γ|polylog n)

• Finding the smallest Γ is NP-complete and APX-hard [1]

• Optimal universal data structures of size Õ(|Γ|) [1,2,4,5]

• FPT algorithms + check if Γ is a valid attractor in linear time [3]

[1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC’18.

[2] Navarro and P. Universal Compressed Text Indexing. TCS’18.
[3] Kempa, Policriti, P., Rotenberg. String Attractors: Verification and Optimization. ESA’18.
[4] P. Optimal Rank and Select Queries on Dictionary-Compressed Text. CPM’19.
[5] Christiansen, Berggren Ettienne, Kociumaka, Navarro, P. Optimal-Time Dictionary-Compressed
Indexes. arXiv preprint arXiv:1811.12779. 2018.

43

String Attractors

Main results:

• Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
• |Γ| ≤ |dictionary compressors| ≤ O(|Γ|polylog n)

• Finding the smallest Γ is NP-complete and APX-hard [1]

• Optimal universal data structures of size Õ(|Γ|) [1,2,4,5]

• FPT algorithms + check if Γ is a valid attractor in linear time [3]

[1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC’18.

[2] Navarro and P. Universal Compressed Text Indexing. TCS’18.
[3] Kempa, Policriti, P., Rotenberg. String Attractors: Verification and Optimization. ESA’18.
[4] P. Optimal Rank and Select Queries on Dictionary-Compressed Text. CPM’19.
[5] Christiansen, Berggren Ettienne, Kociumaka, Navarro, P. Optimal-Time Dictionary-Compressed
Indexes. arXiv preprint arXiv:1811.12779. 2018.

43

String Attractors

Main results:

• Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
• |Γ| ≤ |dictionary compressors| ≤ O(|Γ|polylog n)

• Finding the smallest Γ is NP-complete and APX-hard [1]

• Optimal universal data structures of size Õ(|Γ|) [1,2,4,5]

• FPT algorithms + check if Γ is a valid attractor in linear time [3]

[1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC’18.
[2] Navarro and P. Universal Compressed Text Indexing. TCS’18.
[3] Kempa, Policriti, P., Rotenberg. String Attractors: Verification and Optimization. ESA’18.
[4] P. Optimal Rank and Select Queries on Dictionary-Compressed Text. CPM’19.
[5] Christiansen, Berggren Ettienne, Kociumaka, Navarro, P. Optimal-Time Dictionary-Compressed
Indexes. arXiv preprint arXiv:1811.12779. 2018.

43

String Attractors

Main results:

• Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
• |Γ| ≤ |dictionary compressors| ≤ O(|Γ|polylog n)

• Finding the smallest Γ is NP-complete and APX-hard [1]

• Optimal universal data structures of size Õ(|Γ|) [1,2,4,5]

• FPT algorithms + check if Γ is a valid attractor in linear time [3]

[1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC’18.
[2] Navarro and P. Universal Compressed Text Indexing. TCS’18.
[3] Kempa, Policriti, P., Rotenberg. String Attractors: Verification and Optimization. ESA’18.
[4] P. Optimal Rank and Select Queries on Dictionary-Compressed Text. CPM’19.
[5] Christiansen, Berggren Ettienne, Kociumaka, Navarro, P. Optimal-Time Dictionary-Compressed
Indexes. arXiv preprint arXiv:1811.12779. 2018.

43

Indexing Graphs

Indexing graphs

Recently, the concept of prefix-sorting has been extended to graphs:

Wheeler graph [1]: an edge-labeled graph whose nodes can be prefix-sorted

FM-indexes + Wheeler Graphs = path queries: find nodes reachable (from any
node) by a path labeled w ∈ Σ∗

[1] Gagie, Manzini, Sirén. Wheeler graphs: A framework for BWT-based data structures. TCS’17.

44

Indexing graphs

Recently, the concept of prefix-sorting has been extended to graphs:

Wheeler graph [1]: an edge-labeled graph whose nodes can be prefix-sorted

FM-indexes + Wheeler Graphs = path queries: find nodes reachable (from any
node) by a path labeled w ∈ Σ∗

[1] Gagie, Manzini, Sirén. Wheeler graphs: A framework for BWT-based data structures. TCS’17.

44

L = (ε|aa)b(ab|b)∗

Sorted Wheeler automaton:

sstart q1 q3 q2
a

b

a

b

a

b

Note: paths lead to ranges of states (e.g. a→ [q1, q3]).

45

Indexing graphs

Not all graphs are Wheeler, and they are hard to recognize! Main results:

• Hardness results [1]
• Recognizinig/sorting Wheeler NFAs (WNFAs) is NP-complete
• Remove min number of edges to obtain a W.G.: APX-complete

• Positive results: Indexing regular languages [2]

• WNFA
powerset→ WDFA with linear blow-up

• Recognizing/sorting WDFAs in linear time
• WDFA minimization in O(n log n) time
• Any acyclic DFA → smallest WDFA in almost-optimal time

[1] Gibney, Thankachan. On the Hardness and Inapproximability of Recognizing Wheeler Graphs.
ESA’19.
[2] Alanko, D’Agostino, Policriti, and P. Regular Languages meet Prefix Sorting. SODA’20.

46

Indexing graphs

Not all graphs are Wheeler, and they are hard to recognize! Main results:

• Hardness results [1]
• Recognizinig/sorting Wheeler NFAs (WNFAs) is NP-complete
• Remove min number of edges to obtain a W.G.: APX-complete

• Positive results: Indexing regular languages [2]

• WNFA
powerset→ WDFA with linear blow-up

• Recognizing/sorting WDFAs in linear time
• WDFA minimization in O(n log n) time
• Any acyclic DFA → smallest WDFA in almost-optimal time

[1] Gibney, Thankachan. On the Hardness and Inapproximability of Recognizing Wheeler Graphs.
ESA’19.

[2] Alanko, D’Agostino, Policriti, and P. Regular Languages meet Prefix Sorting. SODA’20.

46

Indexing graphs

Not all graphs are Wheeler, and they are hard to recognize! Main results:

• Hardness results [1]
• Recognizinig/sorting Wheeler NFAs (WNFAs) is NP-complete
• Remove min number of edges to obtain a W.G.: APX-complete

• Positive results: Indexing regular languages [2]

• WNFA
powerset→ WDFA with linear blow-up

• Recognizing/sorting WDFAs in linear time
• WDFA minimization in O(n log n) time
• Any acyclic DFA → smallest WDFA in almost-optimal time

[1] Gibney, Thankachan. On the Hardness and Inapproximability of Recognizing Wheeler Graphs.
ESA’19.
[2] Alanko, D’Agostino, Policriti, and P. Regular Languages meet Prefix Sorting. SODA’20.

46

Future Challenges

Future Challenges

What next?

• Index compressed graphs

• Index super-classes of the Wheeler languages

• Better measures of repetitiveness

• Practical compressed indexes (possibly dynamic)

47

Future Challenges

What next?

• Index compressed graphs

• Index super-classes of the Wheeler languages

• Better measures of repetitiveness

• Practical compressed indexes (possibly dynamic)

47

Future Challenges

What next?

• Index compressed graphs

• Index super-classes of the Wheeler languages

• Better measures of repetitiveness

• Practical compressed indexes (possibly dynamic)

47

Future Challenges

What next?

• Index compressed graphs

• Index super-classes of the Wheeler languages

• Better measures of repetitiveness

• Practical compressed indexes (possibly dynamic)

47

Future Challenges

What next?

• Index compressed graphs

• Index super-classes of the Wheeler languages

• Better measures of repetitiveness

• Practical compressed indexes (possibly dynamic)

47

Thank you for your attention! questions?

48

	Introduction
	

	Entropy Compression
	

	Dictionary Compression
	

	Current directions
	Universal Compression
	Indexing Graphs
	Future Challenges

