Indexing Compressed Text: a Tale of Time and Space

Nicola Prezza, LUISS Guido Carli, Rome 18th Symposium on Experimental Algorithms, Catania, Italy, June 16-18, 2020

Introduction

In this talk I will present a brief history and state-of-the-art of the problem of computing over compressed data.

In this talk I will present a brief history and state-of-the-art of the problem of computing over compressed data.

We will look at solutions for a specific problem (text indexing). In general, the question of the field is:

In this talk I will present a brief history and state-of-the-art of the problem of computing over compressed data.

We will look at solutions for a specific problem (text indexing). In general, the question of the field is:

"I have a really good compressor that compresses my data X into an archive C, with $size(C) \ll size(X)$.

Can I perform computation directly over C, without decompressing it?"

In this talk, we will see solutions for different Cs and one particular problem:

In this talk, we will see solutions for different Cs and one particular problem:

Definition (text indexing) Given a string $S \in \Sigma^n$, build a data structure D(S) that answers the following queries:

In this talk, we will see solutions for different Cs and one particular problem:

Definition (text indexing) Given a string $S \in \Sigma^n$, build a data structure D(S) that answers the following queries:

• **Count** the number *occ* of occurrences of a string $P \in \Sigma^m$, $m \le n$ in *S*

In this talk, we will see solutions for different Cs and one particular problem:

Definition (text indexing) Given a string $S \in \Sigma^n$, build a data structure D(S) that answers the following queries:

- **Count** the number *occ* of occurrences of a string $P \in \Sigma^m$, $m \le n$ in *S*
- Locate the *occ* of occurrences of *P* in *S*

In this talk, we will see solutions for different Cs and one particular problem:

Definition (text indexing) Given a string $S \in \Sigma^n$, build a data structure D(S) that answers the following queries:

- **Count** the number *occ* of occurrences of a string $P \in \Sigma^m$, $m \le n$ in *S*
- Locate the *occ* of occurrences of *P* in *S*
- Extract a text substring $S[i, \ldots, i + \ell 1]$

In this talk, we will see solutions for different Cs and one particular problem:

Definition (text indexing) Given a string $S \in \Sigma^n$, build a data structure D(S) that answers the following queries:

- **Count** the number *occ* of occurrences of a string $P \in \Sigma^m$, $m \le n$ in *S*
- Locate the occ of occurrences of P in S
- Extract a text substring $S[i, \ldots, i + \ell 1]$

Additional constraint: D(S) should take space proportional to C (compressed).

Compressed text indexing

Example

$$S = A T A T A G A T A$$

1 2 3 4 5 6 7 8 9

- Count(ATA) = 3
- Locate(ATA) = {1,3,7}
- Extract(4,7) = "TAGA"

Note: because of the extract query, D(S) replaces S (we call it a *self-index*).

Entropy Compression

At first, research focused on Shannon's measure of text entropy.

In order to do so, we first need to adapt the definition to the *empirical* character frequencies (we work on texts, not on character sources):

At first, research focused on Shannon's measure of text entropy.

In order to do so, we first need to adapt the definition to the *empirical* character frequencies (we work on texts, not on character sources):

Definition (Zero-Order Empirical Entropy)

$$H_0(S) = \sum_{c \in \Sigma} \frac{occ_c}{n} \log_2 \frac{n}{occ_c}$$

where occ_c = number of occurrences of character c in S.

At first, research focused on Shannon's measure of text entropy.

In order to do so, we first need to adapt the definition to the *empirical* character frequencies (we work on texts, not on character sources):

Definition (Zero-Order Empirical Entropy)

$$H_0(S) = \sum_{c \in \Sigma} \frac{occ_c}{n} \log_2 \frac{n}{occ_c}$$

where occ_c = number of occurrences of character c in S.

Thm. $nH_0(S)$ bits are needed to represent a text using any encoding of the alphabet's characters into binary codes that only depend on the character's frequency.

A more powerful notion clusters symbols by context.

A more powerful notion clusters symbols by context.

Let S_C = sting obtained by concatenating all characters that follow substring C in S.

Example: in S = AAATAAGCT, $S_{AA} = "ATG"$

A more powerful notion clusters symbols by context.

Let S_C = sting obtained by concatenating all characters that follow substring C in S.

Example: in S = AAATAAGCT, $S_{AA} = "ATG"$

Definition (High-Order Empirical Entropy*)

$$H_k = \sum_{C \in \Sigma^k} \frac{|S_C|}{n} \cdot H_0(S_C)$$

Intuition: weighted average of the contexts' zero-order entropies.

* From now on we will simply write H_k instead of $H_k(S)$

Entropy compressors (e.g. Huffman, arithmetic) compress S into $nH_k + o(n \log \sigma)$ bits, for some $k \leq \log_{\sigma} n^*$ ($\sigma = |\Sigma|$ = alphabet size)

On typical context-predictable texts, e.g. XML:

- nH_0 is about 65% of $n\log \sigma$.
- nH_5 is about 10% of $n\log \sigma$.

* We cannot do much better than that: Gagie [Inf. Proc. Letters, 2016] showed that for $k \ge \log_{\sigma} n$, no compressed representation can achieve a worst-case space bound of $\Theta(nH_k) + o(n \log \sigma)$

Goal: build a text index taking $O(nH_k) + o(n \log \sigma)$ bits of space and supporting fast queries.

Goal: build a text index taking $O(nH_k) + o(n \log \sigma)$ bits of space and supporting fast queries.

Classic solutions: suffix trees, suffix arrays. Fast, but use $O(n \log n)$ bits of space, which could be two orders of magnitude larger than nH_k .

Goal: build a text index taking $O(nH_k) + o(n \log \sigma)$ bits of space and supporting fast queries.

Classic solutions: suffix trees, suffix arrays. Fast, but use $O(n \log n)$ bits of space, which could be two orders of magnitude larger than nH_k .

Let's see (in 1 slide!) what is and how to compress a suffix array

Input \$-terminated text (\$ $\prec_{lex} c$ for all $c \in \Sigma$) S = A T A T A G A T\$ 1 2 3 4 5 6 7 8 9

Suffix Array: sort positions by lexicographic order of suffixes:

SA = 9 5 7 3 1 6 8 4 2 SA = A A A A A G T T T G T T T A S A A A S A A T G T T G T S A A S A A T G T G T S A A S A A T G T G S T S A S A A T G T G S S S

Note: occurrences of a pattern form a range: count/locate = binary search.

Input \$-terminated text (\$
$$\prec_{lex} c$$
 for all $c \in \Sigma$)
 $S = A T A T A G A T $
1 2 3 4 5 6 7 8 9$
 ψ Array: $\psi[i] = SA^{-1}[SA[i] + 1] *$
 $SA = 9 5 7 3 1 6 8 4 2$
 $\psi = 5 6 7 8 9 3 1 2 4$
 $1 2 3 4 5 6 7 8 9$

Input \$-terminated text (\$ $\prec_{lex} c$ for all $c \in \Sigma$) S = A T A T A G A T \$1 2 3 4 5 6 7 8 9 ψ Array: $\psi[i] = SA^{-1}[SA[i] + 1] *$ SA = 9 5 7 3 1 6 8 4 2 $\psi = 5 6 7 8 9 3 1 2 4$ 1 2 3 4 5 6 7 8 9

• Note: ψ is increasing by letter (color).

Input \$-terminated text (\$ $\prec_{lex} c$ for all $c \in \Sigma$) S = A T A T A G A T \$1 2 3 4 5 6 7 8 9 ψ Array: $\psi[i] = SA^{-1}[SA[i] + 1] *$ SA = 9 5 7 3 1 6 8 4 2 $\psi = 5 6 7 8 9 3 1 2 4$ 1 2 3 4 5 6 7 8 9

- Note: ψ is increasing by letter (color).
- Why? applying ψ = removing the first char from a suffix. Preserves relative ordering of suffixes starting with same letter

Input \$-terminated text (\$ $\prec_{lex} c$ for all $c \in \Sigma$) S = A T A T A G A T \$1 2 3 4 5 6 7 8 9 ψ Array: $\psi[i] = SA^{-1}[SA[i] + 1] *$ SA = 9 5 7 3 1 6 8 4 2 $\psi = 5 6 7 8 9 3 1 2 4$ 1 2 3 4 5 6 7 8 9

- Note: ψ is increasing by letter (color).
- Why? applying $\psi=$ removing the first char from a suffix. Preserves relative ordering of suffixes starting with same letter
- Store Δ[i] = ψ[i] − ψ[i − 1] (delta-encoding): nH₀ + O(n) bits, O(1) random access.

Let's see how to extract the suffix starting in position SA[5]. We store: ψ and first letters (underlined). Space: $nH_0 + O(n)$ bits.

Extracted: A

Let's see how to extract the suffix starting in position SA[5]. We store: ψ and first letters (underlined). Space: $nH_0 + O(n)$ bits.

Extracted: AT

Let's see how to extract the suffix starting in position SA[5]. We store: ψ and first letters (underlined). Space: $nH_0 + O(n)$ bits.

Let's see how to extract the suffix starting in position SA[5]. We store: ψ and first letters (underlined). Space: $nH_0 + O(n)$ bits.

Extracted: ATAT

The range of suffixes prefixed by a pattern ${\it P}$ can be found with binary search using $\psi.$

The range of suffixes prefixed by a pattern ${\it P}$ can be found with binary search using $\psi.$

By sampling the suffix array every $O(\log n)$ text positions, we obtain a **Compressed Suffix Array**.

Trade-offs (later slightly improved):

- **Space**: $nH_0 + O(n)$ bits.
- **Count**: $O(m \log n)$.
- Locate: $O((m + occ) \log n)$ (needs a sampling of SA)
- **Extract**: $O(\ell + \log n)$ (needs a sampling of SA^{-1})

First described in:

Grossi, Vitter. Compressed suffix arrays and suffix trees with applications to text indexing and string matching. In STOC 2000 (pp. 397-406).

We achieved nH_0 . What about nH_k ?

We achieved nH_0 . What about nH_k ?

We use an apparently different (but actually equivalent) idea: the Burrows-Wheeler Transform (BWT, Burrows, Wheeler, 1994)

Sort all circular permutations of S = mississippi\$. BWT = last column.

F											L
\$	m	i	S	S	i	S	S	i	р	р	i
i	\$	m	i	s	s	i	s	s	i	р	р
i	р	р	i	\$	m	i	s	s	i	s	s
i	s	s	i	р	р	i	\$	m	i	s	s
i	s	s	i	s	s	i	р	р	i	\$	m
m	i	s	s	i	s	s	i	р	р	i	\$
р	i	\$	m	i	s	s	i	s	s	i	р
р	р	i	\$	m	i	s	s	i	s	s	i
s	i	р	р	i	\$	m	i	s	s	i	s
s	i	s	s	i	р	р	i	\$	m	i	s
s	s	i	р	р	i	\$	m	i	s	s	i
s	s	i	s	s	i	р	р	i	\$	m	i

Explicitly store only first and last columns.

LF property

LF property. Let $c \in \Sigma$. Then, the *i*-th occurrence of *c* in L corresponds to the *i*-th occurrence of *c* in F (i.e. same position in *T*).

Red arrows: LF function (only character 'i' is shown) Black arrows: implicit backward links (backward navigation of T) Backward search of the pattern 'si'

Burrows-Wheeler Transform

Finally, note: in BWT, characters are partitioned by context (example: k = 2)

F											L
\$	m	i	S	s	i	S	s	i	р	р	i
i	\$	m	i	S	S	i	S	S	i	р	р
i	р	р	i	\$	m	i	S	S	i	S	S
i	s	s	i	р	р	i	\$	m	i	S	s
i	S	s	i	s	s	i	р	р	i	\$	m
m	i	S	S	i	S	S	i	р	р	i	\$
р	i	\$	m	i	S	S	i	s	s	i	р
р	р	i	\$	m	i	S	S	i	s	s	i
s	i	р	р	i	\$	m	i	s	s	i	s
s	i	s	s	i	р	р	i	\$	m	i	s
s	s	i	р	р	i	\$	m	i	s	s	i
s	s	i	s	s	i	р	р	i	\$	m	i

We can compress each context independently using a zero-order compressor (e.g. Huffman) and obtain nH_k

This structure is known as **FM-index**. Simplified trade-offs (later improved):

- Space: $nH_k + o(n \log \sigma)$ bits for $k = \alpha \log_{\sigma} n 1$, $0 < \alpha < 1$.
- Count: $O(m \log \sigma)$.
- Locate: $O(m \log \sigma + occ \log^{1+\epsilon} n)$ (needs a sampling of SA)
- Extract: $O(\ell \log \sigma + \log^{1+\epsilon} n)$ (needs a sampling of SA^{-1})

First described (with slightly different trade-offs) in:

Ferragina, Manzini. Opportunistic data structures with applications. In FOCS 2000, Nov 12 (pp. 390-398).

This structure is known as **FM-index**. Simplified trade-offs (later improved):

- Space: $nH_k + o(n \log \sigma)$ bits for $k = \alpha \log_{\sigma} n 1$, $0 < \alpha < 1$.
- Count: $O(m \log \sigma)$.
- Locate: $O(m \log \sigma + occ \log^{1+\epsilon} n)$ (needs a sampling of SA)
- Extract: $O(\ell \log \sigma + \log^{1+\epsilon} n)$ (needs a sampling of SA^{-1})

First described (with slightly different trade-offs) in:

Ferragina, Manzini. Opportunistic data structures with applications. In FOCS 2000, Nov 12 (pp. 390-398).

Huge impact in medicine and bioinformatics: if you get your own genome sequenced, it will be analyzed using software based on the FM-index.

Then, the data changed!

Then, the data changed!

The last decade has been characterized by an explosion in the production of **highly repetitive massive data**

Then, the data changed!

The last decade has been characterized by an explosion in the production of **highly repetitive massive data**

• DNA repositories (1000genomes project, sequencing,...)

Then, the data changed!

The last decade has been characterized by an explosion in the production of **highly repetitive massive data**

- DNA repositories (1000genomes project, sequencing,...)
- Versioned repositories (wikipedia, github, ...)

Limitations of entropy became apparent: being memory-less, entropy is insensitive to long repetitions (remember: context length k is small!).

• $H_0(ext{banana}) \approx 1.45$

Limitations of entropy became apparent: being memory-less, entropy is insensitive to long repetitions (remember: context length k is small!).

- $H_0(ext{banana}) \approx 1.45$
- $H_0(ext{bananabanana}) \approx 1.45$

Limitations of entropy became apparent: being memory-less, entropy is insensitive to long repetitions (remember: context length k is small!).

- $H_0(ext{banana}) \approx 1.45$
- $H_0(ext{bananabanana}) \approx 1.45$
- $H_0(ext{bananabananabanana}) \approx 1.45$

• ...

As a result, $S^3=$ bananabananabanana compresses to $|S^3| H(S^3)=\mathbf{3}\cdot|\mathbf{S}|\mathbf{H}(\mathbf{S}) \text{ bits } \dots$

As a result, $S^3 =$ bananabananabanana compresses to $|S^3| H(S^3) = \mathbf{3} \cdot |\mathbf{S}| \mathbf{H}(\mathbf{S})$ bits ...

Can you come up with a better compressor?

As a result, $S^3 =$ bananabananabanana compresses to $|S^3| H(S^3) = \mathbf{3} \cdot |\mathbf{S}| \mathbf{H}(\mathbf{S})$ bits ...

Can you come up with a better compressor?

As a result, $S^3 =$ bananabananabanana compresses to $|S^3|H(S^3) = \mathbf{3}\cdot|\mathbf{S}|\mathbf{H}(\mathbf{S})$ bits ...

Can you come up with a better compressor?

 $|S|H(S) + O(\log t) \ll t \cdot |S|H(S)$ bits.

Dictionary Compression

Ideal compressor: Kolmogorov complexity.

Ideal compressor: Kolmogorov complexity. Non computable/approximable!

Ideal compressor: Kolmogorov complexity. Non computable/approximable!

 \Rightarrow We need to fix a text model: exact repetitions

Ideal compressor: Kolmogorov complexity. Non computable/approximable!

 \Rightarrow We need to fix a text model: exact repetitions

A different generation of compressors comes at rescue: Dictionary compressors

General idea:

- Break S into substrings belonging to some dictionary D
- Represent S as pointers to D
- Usually, D is the set of substrings of S (self-referential compression)

LZ77 (Lempel-Ziv, 1977) — 7-zip, winzip

• LZ77 = Greedy partition of text into shortest factors not appearing before: a|n|na|and|nan|ab|anan|anas|andb|ananas

LZ77 (Lempel-Ziv, 1977) — 7-zip, winzip

- LZ77 = Greedy partition of text into shortest factors not appearing before: a|n|na|and|nan|ab|anan|anas|andb|ananas
- To encode each phrase: just a pointer back, phrase length, and 1 character: |LZ77| = O(# of phrases)

LZ77 (Lempel-Ziv, 1977) — 7-zip, winzip

- LZ77 = Greedy partition of text into shortest factors not appearing before: a|n|na|and|nan|ab|anan|anas|andb|ananas
- To encode each phrase: just a pointer back, phrase length, and 1 character: |LZ77| = O(# of phrases)
- Compresses orders of magnitude better than entropy on repetitive texts

Input: S = BANANA

1. Build the matrix of all circular permutations

 B
 A
 N
 A
 N
 A
 \$

 A
 N
 A
 N
 A
 \$
 B
 A

 N
 A
 N
 A
 \$
 S
 B
 A

 N
 A
 \$
 S
 B
 A
 \$
 N

 N
 A
 \$
 S
 B
 A
 N
 A

 N
 A
 \$
 S
 B
 A
 N
 A

 \$
 B
 A
 N
 A
 N
 A
 N

Input: S = BANANA

1. Build the matrix of all circular permutations Sort the rows.
 BWT = last column.

В	А	Ν	А	Ν	А	\$	
А	Ν	А	Ν	А	\$	В	
Ν	А	Ν	А	\$	В	А	
А	Ν	А	\$	В	А	Ν	
Ν	А	\$	В	А	Ν	А	
А	\$	В	А	Ν	А	Ν	
\$	В	А	Ν	А	Ν	А	

						BWT
\$	В	А	Ν	А	Ν	А
А	\$	В	А	Ν	А	Ν
А	Ν	А	\$	В	А	Ν
А	Ν	А	Ν	А	\$	В
В	А	Ν	А	Ν	А	\$
Ν	А	\$	В	А	Ν	А
Ν	А	Ν	А	\$	В	А

Input: S = BANANA

1. Build the matrix of all circular permutations

 B
 A
 N
 A
 X
 S
 S

 A
 N
 A
 N
 A
 S
 B

 N
 A
 N
 A
 S
 B
 A

 N
 A
 N
 A
 S
 B
 A

 N
 A
 N
 A
 S
 B
 A

 N
 A
 S
 B
 A
 N
 A

 N
 A
 S
 B
 A
 N
 A

 N
 A
 S
 B
 A
 N
 A

 N
 A
 S
 B
 A
 N
 A

 N
 A
 S
 B
 A
 N
 A

 N
 A
 S
 B
 A
 N
 A

Sort the rows.
 BWT = last column.

3. Apply run-length compression to BWT = ANNB\$AA

						BWT
\$	В	А	Ν	А	Ν	А
А	\$	В	А	Ν	А	Ν
А	Ν	А	\$	В	А	Ν
А	Ν	А	Ν	А	\$	В
В	А	Ν	А	Ν	А	\$
Ν	А	\$	В	А	Ν	А
Ν	А	Ν	А	\$	В	А

Input: S = BANANA

1. Build the matrix of all circular permutations Sort the rows.
 BWT = last column.

3. Apply run-length compression to BWT = ANNB\$AA

													BWT
В	А	Ν	А	Ν	А	\$	\$	В	А	Ν	А	Ν	А
А	Ν	А	Ν	А	\$	В	А	\$	В	А	Ν	А	N
Ν	А	Ν	А	\$	В	А	А	Ν	А	\$	В	А	N
А	Ν	А	\$	В	А	Ν	А	Ν	А	Ν	А		В
Ν	А	\$	В	А	Ν	А	В	А	Ν	А	Ν	А	\$
А	\$	В	А	Ν	А	Ν	Ν	А	\$	В	А	Ν	A
\$	В	А	Ν	А	Ν	А	Ν	А	Ν	А	\$	В	A

Output: RLBWT = (1,A), (2,N), (1,B), (1,\$), (2,A)

How do these compressors perform in practice?

Real-case example

• All revisions of en.wikipedia.org/wiki/Albert_Einstein

How do these compressors perform in practice?

Real-case example

- All revisions of en.wikipedia.org/wiki/Albert_Einstein
- Uncompressed: 456 MB

How do these compressors perform in practice?

Real-case example

- All revisions of en.wikipedia.org/wiki/Albert_Einstein
- Uncompressed: 456 MB
- $nH_5 \approx 110MB$. 4x compression rate.

How do these compressors perform in practice?

Real-case example

- All revisions of en.wikipedia.org/wiki/Albert_Einstein
- Uncompressed: 456 MB
- $nH_5 \approx 110MB$. 4x compression rate.
- $|RLBWT(T)| \approx 544KB$. 840x compression rate.

How do these compressors perform in practice?

Real-case example

- All revisions of en.wikipedia.org/wiki/Albert_Einstein
- Uncompressed: 456 MB
- $nH_5 \approx 110MB$. 4x compression rate.
- $|RLBWT(T)| \approx 544KB$. 840x compression rate.
- $|LZ77(T)| \approx 310 \text{KB}$. 1400x compression rate.

Known dictionary compressors (compressed size between parentheses):

- 1. **RLBWT** (*r*)
- 2. LZ77 (z)
- 3. macro schemes (b) = bidirectional LZ77 [Storer, Szymanski '78]
- 4. SLPs (g) = context-free grammar generating S [Kieffer, Yang '00]
- 5. RLSLPs $(g_{rl}) =$ SLPs with run-length rules $Z \rightarrow A^{\ell}$ [Nishimoto et al. '16]
- **6.** collage systems (c) = RLSLPs with substring operator [Kida et al. '03]
- 7. word graphs (e) = automata accepting S's substrings [Blumer et al. '87]

(3-6) NP-hard to optimize

Note the zoo of compressibility measures (we'll come back to this later)

Notation:

• r = number of equal-letter runs in the BWT

Notation:

- r = number of equal-letter runs in the BWT
- z = number of phrases in the Lempel-Ziv parse

Notation:

- r = number of equal-letter runs in the BWT
- z = number of phrases in the Lempel-Ziv parse

Note: while it can be proven that z, r are related to nH_k , we don't actually want to do that: we will measure space complexity as a function of z, r.

Given the success of Compressed Suffix Arrays, the first natural try has been to run-length compress them.

2010: t	he Run-Length	CSA	(RLCSA)
---------	---------------	-----	---------

name	space (words/bits)	Count	Locate	Extract
suffix tree ('73)	$\mathcal{O}(n)$ words	$\mathcal{O}(m)$	$\mathcal{O}(m + occ)$	$\mathcal{O}(\ell)$
suffix array ('93)	2n words + text	$\mathcal{O}(m)$	$\mathcal{O}(m + occ)$	$\mathcal{O}(\ell)$
CSA ('00)	$nH_0 + O(n)$ bits	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+occ)$	$ ilde{\mathcal{O}}(\ell)$
FM-index ('00)	$nH_k + o(n\log\sigma)$ bits	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+occ)$	$ ilde{\mathcal{O}}(\ell)$
RLCSA ('10)	$\mathcal{O}(r+n/d)$ words	$\tilde{\mathcal{O}}(m)$	$\tilde{\mathcal{O}}(m + occ \cdot d)$	$ ilde{\mathcal{O}}(\ell+d)$

Mäkinen, Navarro, Sirén, and Välimäki. Storage and retrieval of highly repetitive sequence collections. Journal of Computational Biology, 2010

2010: th	he Run-Length	CSA	(RLCSA)
----------	---------------	-----	---------

name	space (words/bits)	Count	Locate	Extract
suffix tree ('73)	$\mathcal{O}(n)$ words	$\mathcal{O}(m)$	$\mathcal{O}(m + occ)$	$\mathcal{O}(\ell)$
suffix array ('93)	2n words + text	$\mathcal{O}(m)$	$\mathcal{O}(m + occ)$	$\mathcal{O}(\ell)$
CSA ('00)	$nH_0 + O(n)$ bits	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+occ)$	$ ilde{\mathcal{O}}(\ell)$
FM-index ('00)	$nH_k + o(n\log\sigma)$ bits	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+occ)$	$ ilde{\mathcal{O}}(\ell)$
RLCSA ('10)	$\mathcal{O}(r+n/d)$ words	$\tilde{\mathcal{O}}(m)$	$\tilde{\mathcal{O}}(m + occ \cdot d)$	$ ilde{\mathcal{O}}(\ell+d)$

Mäkinen, Navarro, Sirén, and Välimäki. Storage and retrieval of highly repetitive sequence collections. Journal of Computational Biology, 2010

Issue: The trade-off *d* (sampling rate of the suffix array) makes the index impractical on highly-repetitive texts (where $r \ll n$)

What about Lempel-Ziv indexing?

index	compression	space (words)	locate time
KU-LZI[1]	LZ78	$\mathcal{O}(z) + n$	$\tilde{\mathcal{O}}(m^2 + occ)$
NAV-LZI[2]	LZ78	$\mathcal{O}(z)$	$\tilde{\mathcal{O}}(m^3 + occ)$
KN-LZI[3]	LZ77	$\mathcal{O}(z)$	$\tilde{\mathcal{O}}(m^2h+occ)$

 $h \leq n$ is the parse height. In practice small, but worst-case $h = \Theta(n)$

[1] Kärkkäinen, Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string matching. InProc. 3rd South American Workshop on String Processing (WSP'96)

[2] Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete Algorithms. 2004 Mar 1;2(1):87-114.

[3] Kreft, Navarro. On compressing and indexing repetitive sequences. Theoretical Computer Science. 2013 Apr 29;483:115-33.

How do they work? geometric range search

Example: search splitted-pattern $\overleftarrow{CA} \mid \overrightarrow{C}$ (to find *all* splitted occurrences, we have to try all possible splits)

0 2 3 5 6 9 10 11 12 13 14 15 16 19 20 $LZ78 = A \mid C \mid G \mid C \mid G \mid A \mid C$ ACA С С G G т G G G т 1\$ А

Problems:

- Locate time quadratic in m
- These index cannot count (without locating)!

Theorem [1] Let SA[1, ..., r] be the suffix array range of a pattern P. We can sample r positions of the suffix array (at BWT run-borders) such that:

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space. Journal of the ACM

Theorem [1] Let SA[1, ..., r] be the suffix array range of a pattern P. We can sample r positions of the suffix array (at BWT run-borders) such that:

1. We can return SA[I] in $O(m \log \log n)$ time

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space. Journal of the ACM

Theorem [1] Let SA[1, ..., r] be the suffix array range of a pattern P. We can sample r positions of the suffix array (at BWT run-borders) such that:

- 1. We can return SA[I] in $O(m \log \log n)$ time
- **2.** Given SA[i], we can compute SA[i+1] in $O(\log \log n)$ time.

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space. Journal of the ACM

smaller, orders of magnitude faster (r-index): the right tool to index thousands of genomes!

Exciting results:

- Index size for one human chromosome: 250 MB. 35 bps (bits per symbol).
- Index size for 1000 human chromosomes: 550 MB. 0.08 bps
- Faster than the FM-index.

Up-to-date history of compressed suffix arrays:

name	space (words/bits)	Count	Locate	Extract
suffix tree ('73)	$\mathcal{O}(n)$ words	$\mathcal{O}(m)$	$\mathcal{O}(m + occ)$	$\mathcal{O}(\ell)$
suffix array ('93)	2n words + text	$\mathcal{O}(m)$	$\mathcal{O}(m + occ)$	$\mathcal{O}(\ell)$
CSA ('00)	$nH_0 + O(n)$ bits	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+occ)$	$ ilde{\mathcal{O}}(\ell)$
FM-index ('00)	$nH_k + o(n\log\sigma)$ bits	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+occ)$	$ ilde{\mathcal{O}}(\ell)$
RLCSA ('10)	$\mathcal{O}(r + n/d)$ words	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m + occ \cdot d)$	$ ilde{\mathcal{O}}(\ell+ extsf{d})$
r-index [1,2] ('18)	$\mathcal{O}(r)$ words	$\tilde{\mathcal{O}}(m)$	$ ilde{\mathcal{O}}(m+\mathit{occ})$	$\mathcal{O}(\ell + \log(n/r))^*$

[1] Gagie, Navarro, P. Optimal-time text indexing in BWT-runs bounded space. In SODA 2018.

[2] Gagie, Navarro, and P., 2020. Fully-Functional Suffix Trees and Optimal Text Searching in BWT-runs Bounded Space. Journal of the ACM

* only in space $O(r \log(n/r))$

Current directions

- Put some order in the zoo of complexity measures:
 - A definitive measure of "repetitiveness"
 - Relations between existing complexity measures

- Put some order in the zoo of complexity measures:
 - A definitive measure of "repetitiveness"
 - Relations between existing complexity measures
- Universal (compressor-independent) data structures

- Put some order in the zoo of complexity measures:
 - A definitive measure of "repetitiveness"
 - Relations between existing complexity measures
- Universal (compressor-independent) data structures
- Generalizations: indexing labeled graphs/regular languages

Universal Compression

String attractors [1]: a tentative to describe all complexity measures under the same framework. Observation:

- A repetitive string S has a small set of distinct substrings $Q = \{S[i..j]\}$
- What if we fix a set of positions Γ ⊆ [1..|S|] such that every s ∈ Q appears in S crossing some position of Γ?

[1] Kempa, P. At the roots of dictionary compression: String attractors. In STOC 2018.

String attractors [1]: a tentative to describe all complexity measures under the same framework. Observation:

- A repetitive string S has a small set of distinct substrings $Q = \{S[i..j]\}$
- What if we fix a set of positions Γ ⊆ [1..|S|] such that every s ∈ Q appears in S crossing some position of Γ?

We call Γ "string attractor". Intuition: few distinct substrings \Rightarrow small Γ .

[1] Kempa, P. At the roots of dictionary compression: String attractors. In STOC 2018.

Example

$S = CDA\underline{B}CC\underline{D}ABC\underline{CA}$ $\Gamma = \{4, 7, 11, 12\}$

in this case, Γ is also the *smallest* attractor ... why?

- Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
 - $|\Gamma| \le |dictionary \ compressors| \le O(|\Gamma|polylog \ n)$

[1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC'18.

- Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
 - $|\Gamma| \le |dictionary \ compressors| \le O(|\Gamma|polylog \ n)$
- Finding the smallest Γ is NP-complete and APX-hard [1]

[1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC'18.

- Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
 - $|\Gamma| \le |dictionary \ compressors| \le O(|\Gamma|polylog \ n)$
- Finding the smallest Γ is NP-complete and APX-hard [1]
- Optimal universal data structures of size $\tilde{\mathcal{O}}(|\Gamma|)$ [1,2,4,5]

- [1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC'18.
- [2] Navarro and P. Universal Compressed Text Indexing. TCS'18.
- [3] Kempa, Policriti, P., Rotenberg. String Attractors: Verification and Optimization. ESA'18.
- [4] P. Optimal Rank and Select Queries on Dictionary-Compressed Text. CPM'19.
- [5] Christiansen, Berggren Ettienne, Kociumaka, Navarro, P. Optimal-Time Dictionary-Compressed Indexes. arXiv preprint arXiv:1811.12779. 2018.

- Reductions (universal: work for LZ77, RLBWT, grammars,...) [1]:
 - $|\Gamma| \le |dictionary \ compressors| \le O(|\Gamma|polylog \ n)$
- Finding the smallest Γ is NP-complete and APX-hard [1]
- Optimal universal data structures of size $\tilde{\mathcal{O}}(|\Gamma|)$ [1,2,4,5]
- FPT algorithms + check if Γ is a valid attractor in linear time [3]

- [1] Kempa and P. At the Roots of Dictionary Compression: String Attractors. STOC'18.
- [2] Navarro and P. Universal Compressed Text Indexing. TCS'18.
- [3] Kempa, Policriti, P., Rotenberg. String Attractors: Verification and Optimization. ESA'18.
- [4] P. Optimal Rank and Select Queries on Dictionary-Compressed Text. CPM'19.
- [5] Christiansen, Berggren Ettienne, Kociumaka, Navarro, P. Optimal-Time Dictionary-Compressed Indexes. arXiv preprint arXiv:1811.12779. 2018.

Indexing Graphs

Recently, the concept of prefix-sorting has been extended to graphs:

Wheeler graph [1]: an edge-labeled graph whose nodes can be prefix-sorted

[1] Gagie, Manzini, Sirén. Wheeler graphs: A framework for BWT-based data structures. TCS'17.

Recently, the concept of prefix-sorting has been extended to graphs:

Wheeler graph [1]: an edge-labeled graph whose nodes can be prefix-sorted

FM-indexes + Wheeler Graphs = path queries: find nodes reachable (from any node) by a path labeled $w \in \Sigma^*$

[1] Gagie, Manzini, Sirén. Wheeler graphs: A framework for BWT-based data structures. TCS'17.

$$\mathcal{L} = (\epsilon | aa) b(ab | b)^*$$

Sorted Wheeler automaton:

Note: paths lead to ranges of states (e.g. $a \rightarrow [q_1, q_3]$).

Not all graphs are Wheeler, and they are hard to recognize! Main results:

Not all graphs are Wheeler, and they are hard to recognize! Main results:

• Hardness results [1]

- Recognizinig/sorting Wheeler NFAs (WNFAs) is NP-complete
- Remove min number of edges to obtain a W.G.: APX-complete

[1] Gibney, Thankachan. On the Hardness and Inapproximability of Recognizing Wheeler Graphs. ESA'19.

Not all graphs are Wheeler, and they are hard to recognize! Main results:

• Hardness results [1]

- Recognizinig/sorting Wheeler NFAs (WNFAs) is NP-complete
- Remove min number of edges to obtain a W.G.: APX-complete
- Positive results: Indexing regular languages [2]
 - WNFA $\stackrel{powerset}{\rightarrow}$ WDFA with linear blow-up
 - Recognizing/sorting WDFAs in linear time
 - WDFA minimization in O(n log n) time
 - Any acyclic DFA \rightarrow smallest WDFA in almost-optimal time

[1] Gibney, Thankachan. On the Hardness and Inapproximability of Recognizing Wheeler Graphs. ESA'19.

[2] Alanko, D'Agostino, Policriti, and P. Regular Languages meet Prefix Sorting. SODA'20.

Future Challenges

• Index compressed graphs

- Index compressed graphs
- Index super-classes of the Wheeler languages

- Index compressed graphs
- Index super-classes of the Wheeler languages
- Better measures of repetitiveness

- Index compressed graphs
- Index super-classes of the Wheeler languages
- Better measures of repetitiveness
- Practical compressed indexes (possibly dynamic)

Thank you for your attention! questions?