

An Algorithm for the Exact Treedepth Problem

James Trimble

The Treedepth Problem

A *treedepth decomposition* of graph *G* is a rooted forest with vertex set V(G), such that for each edge (v, w) in *G*, *v* is an ancestor of *w* or vice versa.

The *treedepth* of *G* is the smallest depth of any treedepth decomposition of *G*.

The Treedepth Problem: examples

The treedepth of a connected graph *G* equals many things, including:

The vertex ranking number of *G* The centred chromatic number of *G*

The minimum height of an elimination tree for G

The elimination tree of a single-vertex graph is a single-vertex tree $1 \rightarrow 1$

To form an elimination tree of a larger connected graph:

2. Form an elimination 3. Make the root of 1. Remove a vertex; make this the root each of these trees a tree of each remaining component child of the root 6 (6) (6) 3 6 2 4 5 3 5 5

Elimination trees (2)

An *Elimination forest* of *G* is the union of elimination trees of the components of *G*.

- Every elimination forest is a treedepth decomposition
- Every graph G has an elimination forest whose depth equals the treedepth of G
- So to solve the treedepth problem (and find a witness), it suffices to find an elimination tree of minimum depth
- (Nesetril and de Mendez (2012). Sparsity Graphs, Structures, and Algorithms)

The algorithm

elimination_forest(general graph G, int k):

Result: true if and only if an elimination forest of G with depth no greater than k exists if k = 0 and |V(G)| > 0: return false for each connected component C of G: if not elimination_tree(C,k): return false return true

elimination_tree(connected graph G, int k):

```
Require: k \ge 1
Result: true if and only if an elimination tree of G with depth no greater than k exists
if |V(G)| = 1: return true
for each v in V(G):
if elimination_forest(G-v, k-1): return true
return false
```


The algorithm

elimination_forest(general graph G, int k):

Result: true iff an EF of G with depth <= k exists if k = 0 and |V(G)| > 0: return false for each connected component C of G: if not elimination_tree(C,k): return false return true

elimination_tree(connected graph G, int k):

Require: k >= 1 Result: true iff an ET of G with depth <= k exists if |V(G)| = 1: return true for each v in V(G): if elimination_forest(G-v, k-1): return true return false

Try removing v. 1

Try removing v. 2

Try removing v. 5

elimination_forest(general graph G, int k): Result: true iff an EF of G with depth <= k exists if k = 0 and |V(G)| > 0: return false for each connected component C of G: if not elimination_tree(C,k): return false return true

elimination_tree(connected graph G, int k):

Require: k >= 1 Result: true iff an ET of G with depth <= k exists if |V(G)| = 1: return true for each v in V(G): if elimination_forest(G-v, k-1): return true return false

General principle:

There's no need to try a vertex v if we can show that there's a lower-numbered vertex v' that produces an elimination tree that is just as good.

Symmetry breaking

Domination

If G is a subgraph of H, then
treedepth(G) <= treedepth(H)</pre>

Idea:

If G-v' is isomorphic to a subgraph of G-v, then we don't need to try using v as the root of an elimination tree.

Domination rule:

If v' < v and $N(v') \setminus \{v\}$ is a superset of $N(v) \setminus \{v'\}$, there's no need to try v as root.

This was used for preprocessing by Ganian, Lodha, Ordyniak, Szeider (2019)

 $N(1) \setminus \{4\} = \{2,3,5\}$ $N(4) \setminus \{1\} = \{2,5\}$

Only-child rule

Only child rule:

There's no need to try v as the root of a subtree if v is an only child in the tree, and has a lower number than its

parent.

Path lower bound

A graph containing a k-vertex path has treedepth at least $log_2(k+1)$.

We greedily find a path in G, and use this for a lower bound on treedepth.

Simple lower bound

Let b be the maximum degree of G

bound(n):
if n = 0: return 0
return 1 + bound(ceil((n-1)/b))

Experiments

Comparison with partition-based SAT encoding of Ganian, Lodha, Ordyniak, Szeider (2019)

Experiments

Instance	n	m	td	All	-LB	-Sym	-Dom	SAT
Errera	17	45	10	0.007	0.022	2.486	0.006	16.225
Paley17	17	68	14	0.056	0.072	*	0.052	*
Pappus	18	27	8	0.003	0.029	0.019	0.003	2.363
Robertson	19	38	10	0.018	0.365	3.441	0.021	43.926
Desargues	20	30	9	0.004	0.097	0.323	0.005	15.208
Dodecahedron	20	30	9	0.005	0.104	0.329	0.004	11.871
FlowerSnark	20	30	9	0.008	0.298	0.311	0.007	13.415
Folkman	20	40	9	0.004	0.056	0.118	0.007	10.071
$\operatorname{Brinkmann}$	21	42	11	0.195	3.637	*	0.183	*
Kittell	23	63	12	0.405	3.094	*	0.559	*
McGee	24	36	11	0.219	24.042	344.762	0.175	*
Nauru	24	36	10	0.056	4.914	15.565	0.048	179.968
Holt	27	54	13	6.680	441.213	*	5.623	*
WatkinsSnark	50	75	13	*	*	*	870.345	*
B10Cage	70	105		*	*	*	*	*
Ellingham	78	117		*	*	*	*	*

A simple algorithm for finding an elimination tree of minimum depth.

Added to this:

- Symmetry-breaking rule
- Two domination rules
- Lower bounds

There is scope for improvement in domination rules and lower bounds.

Postscript: PACE Challenge 2020

PARAMETERIZED ALGORITHMS AND COMPUTATIONAL EXPERIMENTS THE PACE CHALLENGE ASKS YOU TO IMPLE-

SPONSORED BY

MENT AN ALGORITHM FOR A COMBINATORIAL PUZZLE. THIS YEAR, WE WANT YOU TO COM-PUTE THE TREEDEPTH OF A GRAPH. IN THE HEURISTIC TRACK, YOUR GOAL IS TO FIND A GOOD SOLUTION. IN THE EXACT TRACK YOU MUST FIND THE BEST SOLUTION.

FOR MORE INFORMATION, VISIT HTTPS://PACECHALLENGE.ORG/ ORGANIZED BY

Thank you

James Trimble j.trimble.1@research.gla.ac.uk