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The Treedepth Problem

A treedepth decomposition of graph G is a rooted forest with vertex set
V(G), suchthat for each edge (v,w) in G, v is an ancestor of w or vice
versa.

The treedepth of G is the smallest depth of any treedepth decomposition
of G. Y
L 2))



The Treedepth Problem: examples




The Treedepth Problem

The treedepth of a connected graph G equals many things, including:

The vertex ranking number of G The centred chromatic number of G
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The minimum height of an elimination tree for G [: ) )



Elimination trees

The elimination tree of a single-vertex graph is a single-vertex tree
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To form an elimination tree of a larger connected graph:

1. Remove a vertex; 2. Form an elimination 3. Make the root of
make this the root tree of each remaining each of these trees a
component child of the root
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Elimination trees (2)

An Elimination forest of G is the union of elimination trees of the
components of G.

« Every elimination forest is a treedepth decomposition

« Every graph G has an elimination forest whose depth equals the
treedepth of G

* So to solve the treedepth problem (and find a witness), it suffices
to find an elimination tree of minimum depth

* (Nesetril and de Mendez (2012). Sparsity - Graphs, Structures,
and Algorithms)



The algorithm

elimination_forest(general graph G, int Kk):
Result: true if and only if an elimination forest of G with depth no greater than k exists
if k=0 and |V(G)| > 0O: return false
for each connected component C of G:
If not elimination_tree(C,k): return false
return true

elimination_tree(connected graph G, int k):

Require: k >=1

Result: true if and only if an elimination tree of G with depth no greater than k exists

if [V(G)| = 1: return true

for each v in V(G):

If elimination_forest(G-v, k-1): return true

return false AN
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The algorithm

elimination_forest(general graph G, int Kk):
Result: true iff an EF of G with depth <= k exists
if k=0 and |V(G)| > 0O: return false
for each connected component C of G:
If not elimination_tree(C,k): return false

return true : @ O
Try removing v. 1 (5)
peoe

elimination_tree(connected graph G, int k): @ R—@
Require: k >=1 Try removing v. 2 @ (5 @‘@.@
Result: true iff an ET of G with depth <= k exists
if [V(G)| = 1: return true
for each v in V(G):

L 0@ G
if elimination_forest(G-v, k-1): return true . .

Try removing v. 5
return false 0@ ©0 1 N
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Symmetry breaking and domination rules

elimination_forest(general graph G, int Kk):
Result: true iff an EF of G with depth <= k exists
if k=0 and |V(G)| > 0O: return false
for each connected component C of G:
If not elimination_tree(C,k): return false
return true

elimination_tree(connected graph G, int k):
Require: k >=1
Result: true iff an ET of G with depth <= k exists
if [V(G)| = 1: return true
for each v in V(G):
if elimination_forest(G-v, k-1): return true
return false

General principle:

There’'s no need totry a
vertex v if we can show that
there’s a lower-numbered
vertex v’ that produces an
elimination tree that is just
as good.



Symmetry breaking
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Try removing V. 5 ®



Domination

If G is a subgraph of H, then 0@
treedepth(G) <= treedepth(H) "‘\
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If G-V’ is isomorphic to a subgraph of G-
v, then we don’t need to try using v as

the root of an elimination tree. N(1)\ {4} ={2,3,5}
N(4)\ {1} ={2,5}

Domination rule:
If v < vand N(V)\{v} is a superset of
N(V)\{v’}, there’s no need to try v as root.

This was used for preprocessing by
Ganian, Lodha, Ordyniak, Szeider L 2))
(2019)




Only-child rule
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Only child rule:

There’'s no need totry v as

the root of a subtreeif v is an

only child in the tree, and has

a lower number than its
parent.



Path lower bound

A graph containing a k-vertex path
has treedepth at least log,(k+1).

We greedily find a path in G, and use
this for a lower bound on treedepth.
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Simple lower bound

Let b be the maximum degree of G

bound(n):
ifn=0:return0
return 1 + bound(ceil((n-1)/b))
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SAT encoding
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Comparison with
partition-based SAT
encoding of Ganian,
Lodha, Ordyniak,
Szeider (2019)



Instance n m td All —LB —Sym  —Dom SAT
Errera 17 45 10 0.007 0.022 2.486 0.006 16.225
Paley17 17 68 14 0.056 0.072 * 0.052 *
Pappus 18 27 8 0.003 0.029 0.019 0.003 2.363
Robertson 19 38 10 0.018 0.365 3.441 0.021 43.926
Desargues 20 30 9 0.004 0.097 0.323 0.005 15.208

Dodecahedron 20 30 9 0.005 0.104 0.329 0.004 11.871
FlowerSnark 20 30 9 0.008 0.298 0.311 0.007 13.415

Folkman 20 40 9 0.004 0.056 0.118 0.007 10.071
Brinkmann 21 42 11 0.195 3.637 * 0.183 *
Kittell 23 63 12 0.405 3.094 * 0.559 *
McGee 24 36 11 0.219 24.042 344.762 0.175 *
Nauru 24 36 10 0.056 4.914 15.565 0.048 179.968
Holt 27 54 13 6.680 441.213 * 9.623 *
WatkinsSnark 50 75 13 * * * 870.345 * A\
B10Cage 70 105 * * * * * L 12))
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Ellingham 78 117 * * * *




Conclusion

A simple algorithm for finding an elimination tree of minimum depth.

Added to this:

e Symmetry-breaking rule
 Two domination rules
 Lower bounds

There is scope for improvement in domination rules and lower
bounds.
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