
An Algorithm for the Exact
Treedepth Problem

James Trimble

The Treedepth Problem

A treedepth decomposition of graph G is a rooted forest with vertex set

V(G), such that for each edge (v,w) in G, v is an ancestor of w or vice

versa.

1 2

3

4

5

1 2

3
4

5

1

2

3

4

5

1

2

3

4

5

The treedepth of G is the smallest depth of any treedepth decomposition

of G.

The Treedepth Problem: examples

1 2

3

4

5
1 32 4 5

1 2

3
4

5

1 32 4 5 6 7

1 3

2

4

5

6

7

1

3

2

4

5
1

3
2

4

56

7

8

1 3

2

4

5

6

7

8

The Treedepth Problem

The treedepth of a connected graph G equals many things, including:

The vertex ranking number of G The centred chromatic number of G

The minimum height of an elimination tree for G

4 2

3

2

1

3

Elimination trees

The elimination tree of a single-vertex graph is a single-vertex tree

1 1

To form an elimination tree of a larger connected graph:

1 2

3

4

5

6

1. Remove a vertex;

make this the root

2

3

4

5

6

1

2. Form an elimination

tree of each remaining

component

2

3

4

5

6

1

3. Make the root of

each of these trees a

child of the root

2

3

4

5

6

1

Elimination trees (2)

• Every elimination forest is a treedepth decomposition

• Every graph G has an elimination forest whose depth equals the

treedepth of G

• So to solve the treedepth problem (and find a witness), it suffices

to find an elimination tree of minimum depth

• (Nesetril and de Mendez (2012). Sparsity - Graphs, Structures,

and Algorithms)

An Elimination forest of G is the union of elimination trees of the

components of G.

The algorithm

elimination_forest(general graph G, int k):

Result: true if and only if an elimination forest of G with depth no greater than k exists

if k = 0 and |V(G)| > 0: return false

for each connected component C of G:

if not elimination_tree(C,k): return false

return true

elimination_tree(connected graph G, int k):

Require: k >= 1

Result: true if and only if an elimination tree of G with depth no greater than k exists

if |V(G)| = 1: return true

for each v in V(G):

if elimination_forest(G-v, k-1): return true

return false

The algorithm

elimination_forest(general graph G, int k):

Result: true iff an EF of G with depth <= k exists

if k = 0 and |V(G)| > 0: return false

for each connected component C of G:

if not elimination_tree(C,k): return false

return true

elimination_tree(connected graph G, int k):

Require: k >= 1

Result: true iff an ET of G with depth <= k exists

if |V(G)| = 1: return true

for each v in V(G):

if elimination_forest(G-v, k-1): return true

return false

1 2

5
76

3 4

98

2
5

76

3 4

98

1
5

76

3 4

98

1 2

76

3 4

98

Try removing v. 1

Try removing v. 2

Try removing v. 5

…

Symmetry breaking and domination rules

elimination_forest(general graph G, int k):

Result: true iff an EF of G with depth <= k exists

if k = 0 and |V(G)| > 0: return false

for each connected component C of G:

if not elimination_tree(C,k): return false

return true

elimination_tree(connected graph G, int k):

Require: k >= 1

Result: true iff an ET of G with depth <= k exists

if |V(G)| = 1: return true

for each v in V(G):

if elimination_forest(G-v, k-1): return true

return false

General principle:

There’s no need to try a

vertex v if we can show that

there’s a lower-numbered

vertex v’ that produces an

elimination tree that is just

as good.

Symmetry breaking

1 2

5
76

3 4

98

2
5

76

3 4

98

1
5

76

3 4

98

1 2

76

3 4

98

Try removing v. 1

Try removing v. 2

Try removing v. 5

…

1 2
5

7

3 4

98

1 2
5

6

3 4

98

No need to try v .6…

… or v. 7

Domination

1 2

3

4

5

If G is a subgraph of H, then

treedepth(G) <= treedepth(H)

Idea:

If G-v’ is isomorphic to a subgraph of G-
v, then we don’t need to try using v as

the root of an elimination tree.

Domination rule:

If v’ < v and N(v’)\{v} is a superset of
N(v)\{v’}, there’s no need to try v as root.

This was used for preprocessing by

Ganian, Lodha, Ordyniak, Szeider

(2019)

N(1) \ {4} = {2,3,5}

N(4) \ {1} = {2,5}

2

3
4

5

1 2

35

Only-child rule

1 2

5
76

3 4

98

1 2

5

7

6

3 4

98

1 2

6

7

5

3 4

98

Only child rule:

There’s no need to try v as

the root of a subtree if v is an

only child in the tree, and has

a lower number than its

parent.

Path lower bound

1 2

5
76

3 4

98

A graph containing a k-vertex path

has treedepth at least log2(k+1).

We greedily find a path in G, and use

this for a lower bound on treedepth.

76 8 9

43

5

21

Simple lower bound

Let b be the maximum degree of G

bound(n):

if n = 0: return 0

return 1 + bound(ceil((n-1)/b))

1 2

5

7

3

6

4

Experiments

Comparison with

partition-based SAT

encoding of Ganian,

Lodha, Ordyniak,

Szeider (2019)

Experiments

Conclusion

A simple algorithm for finding an elimination tree of minimum depth.

Added to this:

• Symmetry-breaking rule

• Two domination rules

• Lower bounds

There is scope for improvement in domination rules and lower

bounds.

Postscript:
PACE
Challenge
2020

Thank you
James Trimble

j.trimble.1@research.gla.ac.uk

