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The Treedepth Problem

A treedepth decomposition of graph G is a rooted forest with vertex set 

V(G), such that for each edge (v,w) in G, v is an ancestor of w or vice 

versa.
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The treedepth of G is the smallest depth of any treedepth decomposition 

of G.



The Treedepth Problem: examples
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The Treedepth Problem

The treedepth of a connected graph G equals many things, including:

The vertex ranking number of G The centred chromatic number of G

The minimum height of an elimination tree for G
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Elimination trees

The elimination tree of a single-vertex graph is a single-vertex tree
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To form an elimination tree of a larger connected graph:
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1. Remove a vertex; 

make this the root
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2. Form an elimination 

tree of each remaining 

component
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3. Make the root of 

each of these trees a 

child of the root
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Elimination trees (2)

• Every elimination forest is a treedepth decomposition

• Every graph G has an elimination forest whose depth equals the 

treedepth of G

• So to solve the treedepth problem (and find a witness), it suffices 

to find an elimination tree of minimum depth

• (Nesetril and de Mendez (2012). Sparsity - Graphs, Structures, 

and Algorithms)

An Elimination forest of G is the union of elimination trees of the 

components of G.



The algorithm

elimination_forest(general graph G, int k):

Result: true if and only if an elimination forest of G with depth no greater than k exists

if k = 0 and |V(G)| > 0: return false

for each connected component C of G:

if not elimination_tree(C,k): return false

return true

elimination_tree(connected graph G, int k):

Require: k >= 1

Result: true if and only if an elimination tree of G with depth no greater than k exists

if |V(G)| = 1: return true

for each v in V(G):

if elimination_forest(G-v, k-1): return true

return false



The algorithm

elimination_forest(general graph G, int k):

Result: true iff an EF of G with depth <= k exists

if k = 0 and |V(G)| > 0: return false

for each connected component C of G:

if not elimination_tree(C,k): return false

return true

elimination_tree(connected graph G, int k):

Require: k >= 1

Result: true iff an ET of G with depth <= k exists

if |V(G)| = 1: return true

for each v in V(G):

if elimination_forest(G-v, k-1): return true

return false
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Try removing v. 5

…



Symmetry breaking and domination rules

elimination_forest(general graph G, int k):

Result: true iff an EF of G with depth <= k exists

if k = 0 and |V(G)| > 0: return false

for each connected component C of G:

if not elimination_tree(C,k): return false

return true

elimination_tree(connected graph G, int k):

Require: k >= 1

Result: true iff an ET of G with depth <= k exists

if |V(G)| = 1: return true

for each v in V(G):

if elimination_forest(G-v, k-1): return true

return false

General principle:

There’s no need to try a 

vertex v if we can show that 

there’s a lower-numbered 

vertex v’ that produces an 

elimination tree that is just 

as good.



Symmetry breaking
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Domination
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If G is a subgraph of H, then 

treedepth(G) <= treedepth(H)

Idea:

If G-v’ is isomorphic to a subgraph of G-
v, then we don’t need to try using v as 

the root of an elimination tree.

Domination rule:

If v’ < v and N(v’)\{v} is a superset of 
N(v)\{v’}, there’s no need to try v as root.

This was used for preprocessing by 

Ganian, Lodha, Ordyniak, Szeider

(2019)

N(1) \ {4} = {2,3,5}

N(4) \ {1} = {2,5}
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Only-child rule
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Only child rule:

There’s no need to try v as 

the root of a subtree if v is an 

only child in the tree, and has 

a lower number than its 

parent.



Path lower bound
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A graph containing a k-vertex path 

has treedepth at least log2(k+1).

We greedily find a path in G, and use 

this for a lower bound on treedepth.
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Simple lower bound

Let b be the maximum degree of G

bound(n):

if n = 0: return 0

return 1 + bound(ceil((n-1)/b))

1 2

5

7

3

6

4



Experiments

Comparison with 

partition-based SAT 

encoding of Ganian, 

Lodha, Ordyniak, 

Szeider (2019)



Experiments



Conclusion

A simple algorithm for finding an elimination tree of minimum depth.

Added to this:

• Symmetry-breaking rule

• Two domination rules

• Lower bounds

There is scope for improvement in domination rules and lower 

bounds.
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