Effect of Initial Assignment on Local Search Performance for Max Sat

Daniel Berend and Yochai Twitto

Ben-Gurion University of the Negev

June 2020

Outline

1 Introduction

- The problem: Max *r*-Sat
- The local search: CCLS
- The initialization: MOCE

2 Correlation

- Experimental settings
- End-to-end correlation
- Ongoing correlation

Improving CCLS

4 Conclusion

- In the Max *r*-Sat problem, we are given a **sequence with repetitions** of clauses over some boolean variables.
- Each clause is a disjunction of **exactly** *r* literals over **distinct** variables.

Example of instance

$$(v_1 \lor v_2 \lor v_3) \land (v_1 \lor \neg v_2 \lor \neg v_3) \land (v_1 \lor v_2 \lor v_3) \land (\neg v_1 \lor v_2 \lor v_3)$$

- In the Max *r*-Sat problem, we are given a **sequence with repetitions** of clauses over some boolean variables.
- Each clause is a disjunction of **exactly** *r* literals over **distinct** variables.

Example of instance

 $(v_1 \lor v_2 \lor v_3) \land (v_1 \lor \neg v_2 \lor \neg v_3) \land (v_1 \lor v_2 \lor v_3) \land (\neg v_1 \lor v_2 \lor v_3)$

• We seek a truth (true/false) assignment for the variables, maximizing the number of satisfied (made true) clauses.

- n variables.
- m clauses.
- $\alpha = m/n$, and assume $\alpha > 0$ is a constant.

- Local search heuristics **explore** the assignment space.
- They usually **start** from a randomly generated assignment.
- They traverse the search space by flipping variables.

- The leading solver **CCLS** follows the local search scheme.
- It flips variables until some predefined number of flips is executed or the allotted time has been used up.

- The leading solver **CCLS** follows the local search scheme.
- It flips variables until some predefined number of flips is executed or the allotted time has been used up.
- CCLS performs two types of flips.
 - Random flips, with some predefined probability p.
 - **Greedy** flips, with probability 1 p.

• Flip a randomly selected variable from a randomly selected **unsatisfied** clause.

• Flip the seemingly best possible variable.

- Flip the seemingly best possible variable.
- Among variables that have two properties:
 - Their configuration has been changed.
 - They satisfy at least one currently unsatisfied clause.

- Flip the seemingly best possible variable.
- Among variables that have two properties:
 - Their configuration has been changed.
 - They satisfy at least one currently unsatisfied clause.
- This variable is the one whose flipping will lead to the **maximum** number of satisfied clauses.
 - Ties are broken randomly.

• **MOCE** iteratively constructs an assignment by going over the variables in some (random) order.

- **MOCE** iteratively constructs an assignment by going over the variables in some (random) order.
- At each iteration, it sets the **seemingly better truth value** to the currently considered variable.

- **MOCE** iteratively constructs an assignment by going over the variables in some (random) order.
- At each iteration, it sets the **seemingly better truth value** to the currently considered variable.
- This is done by comparing the **expected number of satisfied clauses** under each of the two possible truth values it may set to the current variable.

• For a given truth value, the expected number of satisfied clauses is the **sum of three quantities**.

(MOCE)

- For a given truth value, the expected number of satisfied clauses is the **sum of three quantities**.
- The **first** is the number of clauses already satisfied by the values assigned to the previously considered variables.

(MOCE)

- For a given truth value, the expected number of satisfied clauses is the **sum of three quantities**.
- The **first** is the number of clauses already satisfied by the values assigned to the previously considered variables.
- The **second** is the additional number of clauses satisfied by the assignment of the given truth value to the current variable.

(MOCE)

- For a given truth value, the expected number of satisfied clauses is the **sum of three quantities**.
- The **first** is the number of clauses already satisfied by the values assigned to the previously considered variables.
- The **second** is the additional number of clauses satisfied by the assignment of the given truth value to the current variable.
- The **third** is the expected number of clauses that will be satisfied by a random assignment to all currently unassigned variables.

- The truth value, for which the **sum is larger**, is the one selected for the current variable.
- Ties are broken randomly.

- The truth value, for which the **sum is larger**, is the one selected for the current variable.
- Ties are broken randomly.
- The whole **process is repeated** until all variables are assigned.

Outline

1 Introduction

- The problem: Max *r*-Sat
- The local search: CCLS
- The initialization: MOCE

2 Correlation

- Experimental settings
- End-to-end correlation
- Ongoing correlation

Improving CCLS

4 Conclusion

• To generate initial assignments of **diverse quality**, we manipulate MOCE

- To generate initial assignments of **diverse quality**, we manipulate MOCE
- We add to it a parameter that allows us to **invert its decision** regarding the truth value for the current variable.

- To generate initial assignments of **diverse quality**, we manipulate MOCE
- We add to it a parameter that allows us to **invert its decision** regarding the truth value for the current variable.
- This parameter, is the probability to assign to a variable the truth value **opposite** to the one chosen by MOCE.

• For a given **inversion probability** $0 \le p \le 1$, at each step, we assign to the current variable the truth value chosen by MOCE with probability 1 - p, and the opposite truth value with probability p.

- For a given **inversion probability** $0 \le p \le 1$, at each step, we assign to the current variable the truth value chosen by MOCE with probability 1 p, and the opposite truth value with probability p.
- Thus, for p = 0 the algorithm is simply MOCE, while for p = 1 it is "anti-MOCE".

14/31

- For a given **inversion probability** $0 \le p \le 1$, at each step, we assign to the current variable the truth value chosen by MOCE with probability 1 p, and the opposite truth value with probability p.
- Thus, for p = 0 the algorithm is simply MOCE, while for p = 1 it is "anti-MOCE".
- We refer to this tailored algorithm as **PMOCE**.

- 5 families of instances of Max 3-Sat.
- Each of the families consists of **150 instances** over 100,000 variables.
- The densities of the 5 families are 5, 7, 9, 12, 15.
- The instances in each family were generated uniformly at random.

- For each instance in the family, we executed PMOCE with **51 inversion probabilities**, ranging from 0 to 1 in steps of 0.02.
- Thus, we obtained **51 initial assignments** with presumed diverse quality.

16/31

- From each of these initial assignments, we started **a 30 minutes local search** using CCLS, and thus obtained 51 final assignments.
- By the end of the 51 executions, we had **51 pairs** of numbers.
- Each pair consisted of the number of clauses unsatisfied by the **initial** assignment generated by PMOCE, and the number of unsatisfied clauses at the **end** of the search done by CCLS.

	correlation coefficient			regression slope		
density	mean	std	p-value	mean	std	
5	0.52	0.11	$1.7\cdot10^{-3}$	$0.5\cdot 10^{-3}$	$0.1\cdot 10^{-3}$	
7	0.74	0.06	$3.6 \cdot 10^{-7}$	$1.5 \cdot 10^{-3}$	$0.2\cdot10^{-3}$	
9	0.79	0.12	$2.1\cdot 10^{-3}$	$2.2\cdot 10^{-3}$	$0.5\cdot10^{-3}$	
12	0.73	0.17	$1.2\cdot 10^{-3}$	$2.4\cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	
15	0.83	0.08	$1.1\cdot 10^{-5}$	$3.4\cdot10^{-3}$	$0.7\cdot 10^{-3}$	

Table: End-to-end correlation coefficients and regression slopes.

The results show a **strong positive correlation** between the quality of the initial and final assignment for all densities. The correlation is stronger for denser families.

	correlation coefficient			regression slope		
density	mean	std	p-value	mean	std	
5	0.52	0.11	$1.7\cdot10^{-3}$	$0.5\cdot 10^{-3}$	$0.1\cdot 10^{-3}$	
7	0.74	0.06	$3.6 \cdot 10^{-7}$	$1.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$	
9	0.79	0.12	$2.1\cdot 10^{-3}$	$2.2\cdot 10^{-3}$	$0.5\cdot10^{-3}$	
12	0.73	0.17	$1.2\cdot10^{-3}$	$2.4\cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	
15	0.83	0.08	$1.1\cdot 10^{-5}$	$3.4\cdot10^{-3}$	$0.7\cdot 10^{-3}$	

Table: End-to-end correlation coefficients and regression slopes.

The *p*-value is lower by far than the conventional 0.05, which indicates that the correlation coefficients obtained in the experiments are statistically very significant.

	correlation coefficient			regression slope		
density	mean	std	p-value	mean	std	
5	0.52	0.11	$1.7\cdot10^{-3}$	$0.5\cdot 10^{-3}$	$0.1\cdot 10^{-3}$	
7	0.74	0.06	$3.6 \cdot 10^{-7}$	$1.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$	
9	0.79	0.12	$2.1\cdot 10^{-3}$	$2.2\cdot 10^{-3}$	$0.5\cdot10^{-3}$	
12	0.73	0.17	$1.2\cdot10^{-3}$	$2.4\cdot10^{-3}$	$1.0 \cdot 10^{-3}$	
15	0.83	0.08	$1.1\cdot 10^{-5}$	$3.4\cdot10^{-3}$	$0.7\cdot 10^{-3}$	

Table: End-to-end correlation coefficients and regression slopes.

The **regression slope** suggests that a large improvement in the initial assignment yields only a **small improvement** in the final assignment.

Histograms of end-to-end correlation coefficients

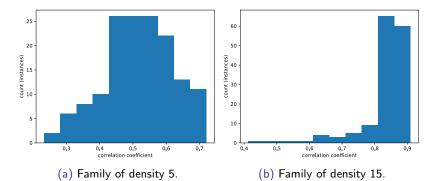


Figure: Histograms of end-to-end correlation coefficients.

The figure depicts histograms of the 150 end-to-end correlation coefficients of the family of density 5 (a) and for the family of density 15 (b).

21/31

• Besides the end-to-end correlation, we explored the **ongoing** correlation during the experiment.

- Besides the end-to-end correlation, we explored the **ongoing** correlation during the experiment.
- We recorded the minimum number of unsatisfied clauses found so far **after every 1000 flips** made by CCLS.

- Besides the end-to-end correlation, we explored the **ongoing** correlation during the experiment.
- We recorded the minimum number of unsatisfied clauses found so far **after every 1000 flips** made by CCLS.
- Then we calculated the correlation coefficient between the number of clauses unsatisfied by the initial assignment and the number of unsatisfied clauses recorded at each 1000 flips snapshot.

Ongoing correlation

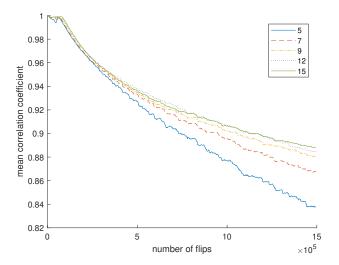


Figure: Ongoing correlation decay as a function of the number of flips.

D. Berend and Y. Twitto Initial Assignment, Local Search Performance, Max Sat

Outline

1 Introduction

- The problem: Max *r*-Sat
- The local search: CCLS
- The initialization: MOCE

2 Correlation

- Experimental settings
- End-to-end correlation
- Ongoing correlation

Improving CCLS

4 Conclusion

- We study the improvement obtained by letting CCLS start its execution from good initial assignments.
- Specifically, the good initial assignments we use are assignments provided by MOCE.

- We study the improvement obtained by letting CCLS start its execution from good initial assignments.
- Specifically, the good initial assignments we use are assignments provided by MOCE.
- We refer to the algorithm that starts from the assignment provided by MOCE as **MOCE-CCLS**.
- To emphasize the fact that the original CCLS algorithm starts from a random assignment, we will call it **RAND-CCLS**.

Improving CCLS

α	3			5		
n	RC	MC	% improve	RC	MC	% improve
10000	0	0	NaN	248	246	0.81%
50000	0	0	NaN	1417	1403	0.99%
100000	0	0	NaN	3038	3002	1.18%
500000	0	0	NaN	29976	22894	23.63%
1000000	72642	0	100.00%	320674	75260	76.53%
α	7			9		
n	RC	MC	% improve	RC	MC	% improve
10000	1265	1264	0.08%	2546	2537	0.35%
50000	6647	6617	0.45%	13122	13052	0.53%
100000	13717	13588	0.94%	26770	26554	0.81%
500000	99976	83163	16.82%	178234	152512	14.43%
1000000	548044	210440	61.60%	769640	363037	52.83%

Table: MOCE-CCLS (MC) vs. RAND-CCLS (RC).

D. Berend and Y. Twitto Initial Assignment, Local Search Performance, Max Sat

Improving CCLS

• We also compared MOCE-CCLS and RAND-CCLS on the random instances of Max Sat Evaluation 2016.

- We also compared MOCE-CCLS and RAND-CCLS on the random instances of **Max Sat Evaluation 2016**.
- While RAND-CCLS **wins** on the competition instances, it is enough to blow up the instances tenfold to have MOCE-CCLS achieve an overall **draw**.

- We also compared MOCE-CCLS and RAND-CCLS on the random instances of **Max Sat Evaluation 2016**.
- While RAND-CCLS **wins** on the competition instances, it is enough to blow up the instances tenfold to have MOCE-CCLS achieve an overall **draw**.
- When scaling the instances by a factor of 100, MOCE-CCLS wins **decisively**, and when scaling by a factor of 1000, it beats RAND-CCLS by a **knockout**.

Outline

1 Introduction

- The problem: Max *r*-Sat
- The local search: CCLS
- The initialization: MOCE

2 Correlation

- Experimental settings
- End-to-end correlation
- Ongoing correlation

Improving CCLS

4 Conclusion

We have explored the **correlation** between the quality of initial assignments provided to local search heuristics and that of the corresponding final assignments.

We have shown that this correlation is **significant and long-lasting**.

Thus, under practical time constraints, **the quality of the initial assignment is crucial** to the performance of local search heuristics. We demonstrated our point by **improving** the state-of-the-art solver CCLS, by combining it with MOCE.

The combined MOCE-CCLS solver provided a **significant improvement** over CCLS.

Moreover, MOCE-CCLS proved to be **much more scalable** — it handles larger instances better.

Thank you!

