

Efficient Route Planning with Temporary Driving Restrictions

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz | June 17th, 2020

INSTITUTE OF THEORETICAL INFORMATICS

Scenario

Introduction Model Algorithm Ev Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Scenario

Introduction Model Algorithm Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions Evaluation

Scenario

 Introduction
 Model
 Algorithm

 Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz –
 Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Goals

Achieve practical performance

 Avoid NP-hard problem formulation

② Consider quality of parking locations

Consider trade-offs between earlier arrival and more comfortable routes

 Introduction
 Model
 Algorithm

 Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz –
 Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings
- Waiting costs w_i
- Driving costs d

Problem

- Find Pareto-optimal routes between vertices s and z regarding arrival time and abstract costs
- Waiting at a node causes costs depending on the ratio
- Waiting at unrated locations is allowed, driving also has a cost

Introduction Model Algorithm Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings
- Waiting costs w_i
- Driving costs d

Problem

- Find Pareto-optimal routes between vertices s and z
 reparding arrival time and abstract costs
- Waiting at a node causes costs depending on the rating
- Waiting at unrated locations is allowed, driving also has a cost

Introduction Model Algorithm Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings
- Waiting costs w_i
- Driving costs d

Problem

- Find Pareto-optimal routes between vertices *s* and *z*
 - regarding arrival time and abstract costs
- Waiting at a node causes costs depending on the rating
- Waiting at unrated locations is allowed, driving also has a cost

Evaluation

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings
- Waiting costs w_i
- Driving costs d

Problem

- Find Pareto-optimal routes between vertices s and z
 - regarding arrival time and abstract costs
- Waiting at a node causes costs depending on the rating
 - Waiting at unrated locations is allowed, driving also has a cost

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings

Dз w [0, 6)[0, 10)U 3

Problem

- Find Pareto-optimal routes between vertices s and z
 - regarding arrival time and abstract costs

Efficient Route Planning with Temporary Driving Restrictions

Algorithm

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings
- Waiting costs w_i
- Driving costs d

$u = \begin{bmatrix} 0, 10 \\ 0, 10 \end{bmatrix}$

Problem

- Find Pareto-optimal routes between vertices s and z
 - regarding arrival time and abstract costs
- Waiting at a node causes costs depending on the rating

Waiting at unrated locations is allowed, driving also has a cost

Given:

- Graph G = (V, E)
- Travel times δ
- Temporary driving restrictions
- Parking locations with ratings
- Waiting costs w_i
- Driving costs d

Problem

- Find Pareto-optimal routes between vertices s and z
 - regarding arrival time and abstract costs
- Waiting at a node causes costs depending on the rating
- Waiting at unrated locations is allowed, driving also has a cost

Evaluatio

aluation

Complexity

NP-hard by reduction from PARTITION

Possibly exponential number of Pareto-optimal routes

Introduction Model Algorithm Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions Evaluation

ation

Algorithm

- Label-correcting Dijkstra
- Labels: Cost profiles
 - Tentative minimal costs
 - as function of arrival time
 - Piecewise linear functions
- Queue ordered by update time
- Polynomial running time
 - when $d = w_0$

Algorithm: Linking and Merging

 Introduction
 Model
 Algorithm
 Evaluation
 Conclusion

 Alexander Kleff - Frank Schulz - Jakob Wagenblatt - Tim Zeitz –
 Efficient Route Planning with Temporary Driving Restrictions
 June 17th, 2020
 9/18

Efficient Route Planning with Temporary Driving Restrictions

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Introduction

Conclusion

June 17th, 2020 10/18

Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 10/

10/18

Efficient Route Planning with Temporary Driving Restrictions

Conclusion

June 17th, 2020 10/18

Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 10/18

Introduction Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Introduction

Conclusion

June 17th, 2020 10/18

Introduction Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Introduction

June 17th, 2020

10/18

10/18

Introduction Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Introduction

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Introduction

Introduction Model Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Introduction Model Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Introduction Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Conclusion

June 17th, 2020 11/18

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Introduction

June 17th, 2020 11/18

Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 11/18

Introduction Model Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Introduction Model Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Introduction Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Introduction

Conclusion

Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 11/18

Introduction Model Alexander Kleff · Frank Schulz · Jakob Wagenblatt · Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

Evaluation

Conclusion

Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 11/18

Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 11/18

Implementation

C++14

- Using RoutingKit
- Pruning...
 - with bounds
 - with the target profile
 - loops
- Goal directed search with A*
 - with CH-Potentials [SZ19]

Experiments

Road network of central Europe

- 21.9M vertices, 47.6M edges
- Sunday and night driving bans and local road closures
- 15317 parking location vertices
- Queries
 - Select random vertices from A and B
 - Make algorithm cope with night driving bans

Machine

- Intel i7-7600 CPU with 3.4 GHz
- 32 GB DDR4 RAM

Trade-offs

16 h driving time,2.5 min waiting time (rating 3)

13 h driving time, 4 h waiting time (rating 5)

10 h driving time, 8 h waiting time (rating 4)

Introduction

Model

Algorithm

Evaluation

Conclusion

Alexander Kleff - Frank Schulz - Jakob Wagenblatt - Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 14/18

Waiting

15/18

- Most of waiting scheduled at s
- At most one additional stop per route
 - Average 0.2
- Waiting at unrated locations
 - Happens
 - Always the quickest route
 - Alternative routes exist

- Results stable against different cost parameterizations
 - Availability + costs influences where most waiting happens

Performance

	Optimal	Arrival time	Runnir	Running time	
Planning horizon	Routes	deviation	Avg.	Median	
	[#]	[h:mm]	[ms]	[ms]	
Mon. 18:00, 1 day	2.86	2:17	529.4	266.3	
Mon. 18:00, 2 days	3.54	3:19	648.1	405.6	
Fri. 06:00, 1 day	1.04	0:10	10.0	0.6	
Fri. 06:00, 2 days	1.08	0:16	79.5	0.7	
Fri. 18:00, 1 day	1.13	0:08	205.8	0.6	
Fri. 18:00, 2 days	1.32	0:20	1028.1	0.7	

Introduction	Model	Algorithm	Evaluation	Conclusion
Alexander Kleff · Frank	Schulz · Jakob Wagenblatt · Til	m Zeitz –		
Efficient Route Planning	with Temporary Driving Restri	ctions	June 17th, 2020	16/18

Conclusion

- Achieve practical performance
- 2 Consider quality of parking locations
- Consider trade-offs between earlier arrival and more comfortable routes
- Introduced problem formulation achieving these goals
 - Solvable in polynomial time for certain parametrizations
- Implementation
 - Reasonable routes on realistic instances
 - Average running times below 1 s
- Future work
 - Bidirectional search

Introduction

Model

Algorithm

Evaluation

Conclusion

Alexander Kleff · Frank Schulz · Jakob Wagenblatt · **Tim Zeitz** – Efficient Route Planning with Temporary Driving Restrictions

Thank you!

Introduction

Model

Algorithm

Evaluation

Conclusion

Alexander Kleff - Frank Schulz - Jakob Wagenblatt - Tim Zeitz -Efficient Route Planning with Temporary Driving Restrictions

June 17th, 2020 18/18

Ben Strasser and Tim Zeitz. A* with Perfect Potentials. 2019. arXiv: 1910.12526 [cs.DS].