

Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA

SEA · June 17, 2020 Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

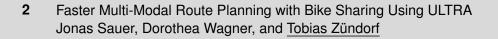
www.kit.edu

- Journey planning for public transit
- Find optimal journeys
- Consider modes of transportation:
 - All timetable-based modes (trains, trams, buses, ...)

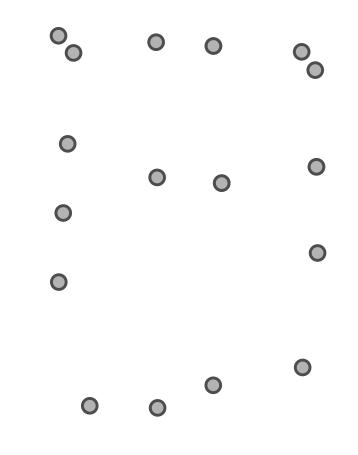
- Journey planning for public transit
- Find optimal journeys
- Consider modes of transportation:
 - All timetable-based modes (trains, trams, buses, ...)
 - Walking (from, to, and between stops)

- Journey planning for public transit
- Find optimal journeys
- Consider modes of transportation:
 - All timetable-based modes (trains, trams, buses, ...)
 - Walking (from, to, and between stops)
 - Bike sharing (or other rental based services)

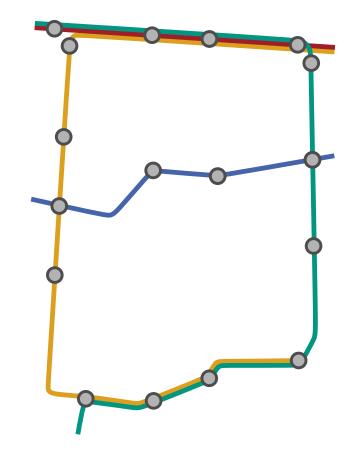
- Journey planning for public transit
- Find optimal journeys
- Consider modes of transportation:
 - All timetable-based modes (trains, trams, buses, ...)
 - Walking (from, to, and between stops)
 - Bike sharing (or other rental based services)
 - No limits on any of the transportation modes



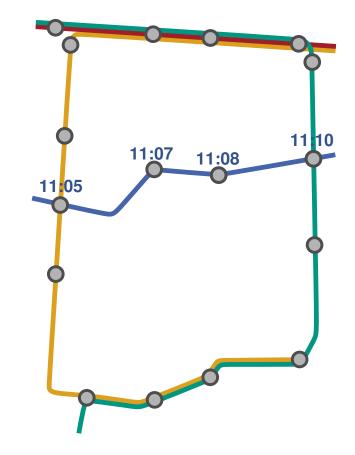
Given:

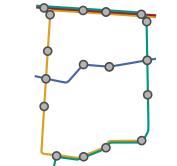

Public transit network (timetable)

- Public transit network (timetable)
 - Stops (bus stops, stations)

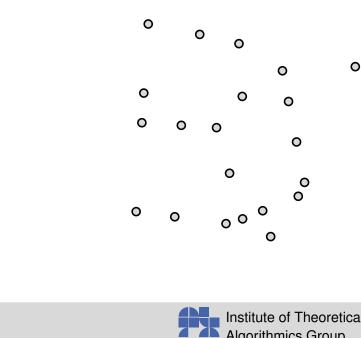


- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)




- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)



Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)

0

° 0

0

0

 \cap

 \mathbf{O}

00

 \mathbf{O}

 \mathbf{O}

0

0

0

0

0

0

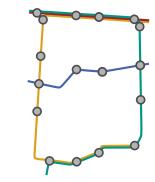
0

0 0

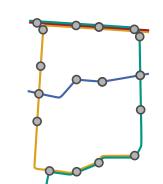
0

0

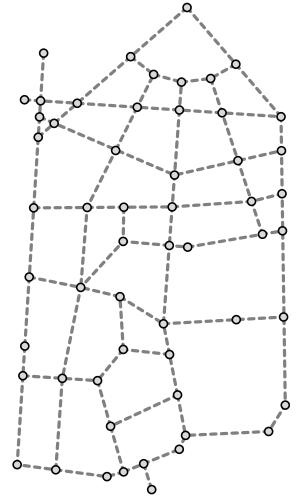
Ο


00

0

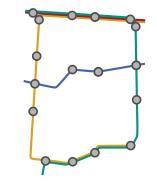

0

0

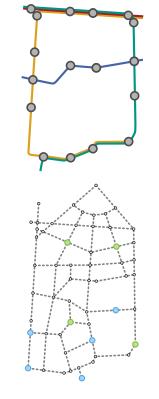

0

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)

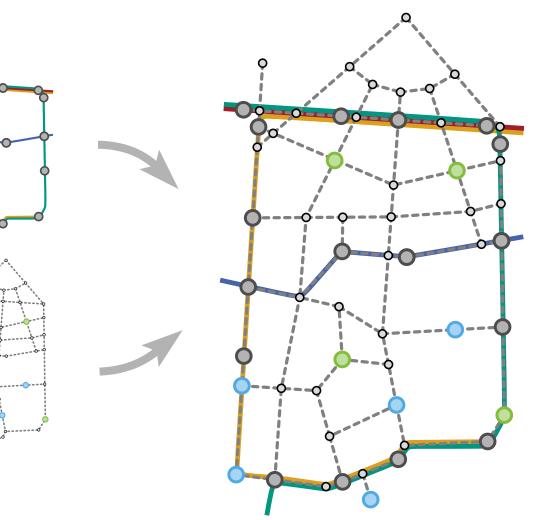




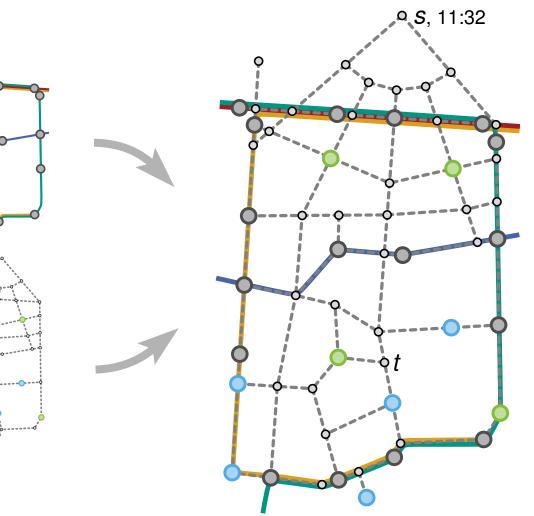
- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)



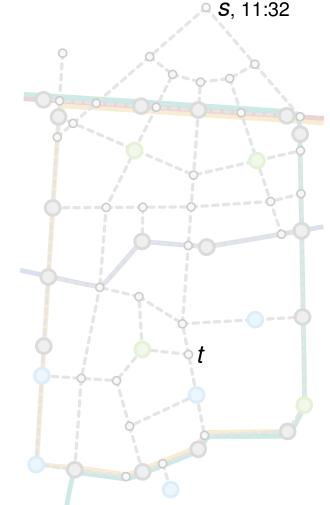
- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)



- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)



- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)
- Source *s*, target *t*, and a departure time


Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)
- Source s, target t, and a departure time

Objective: Find all Pareto-optimal journeys w.r.t. arrival time and number of trips

2 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)
- Source s, target t, and a departure time

Objective: Find all Pareto-optimal journeys w.r.t. arrival time and number of trips

2 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

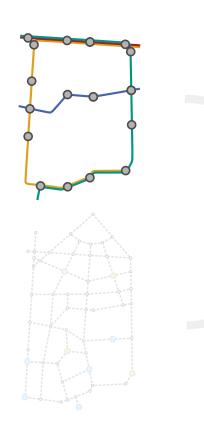
9.*S*. 11:32

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)
- Source s, target t, and a departure time

Objective: Find all Pareto-optimal journeys w.r.t. arrival time and number of trips

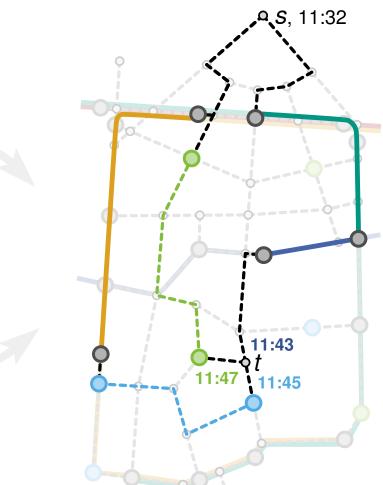
2 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>



11:43

1:45

P.S. 11:32

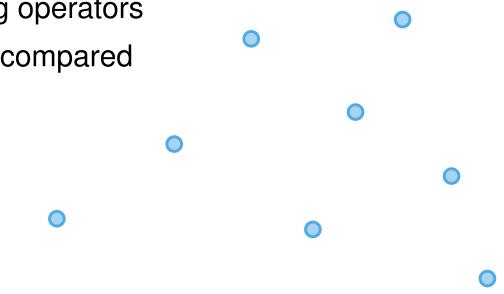

Given:

- Public transit network (timetable)
 - Stops (bus stops, stations)
 - Routes (bus lines, train lines)
 - Trips (schedule of a vehicle)
- Transfer graph (non-schedule based)
 - Vertices (crossings, places)
 - Edges (roads, paths)
 - Bike sharing stations (per operator)
- Source s, target t, and a departure time

Objective: Find all Pareto-optimal journeys w.r.t. arrival time and number of trips

2 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Greatest Challenge:


- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

VO

S

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

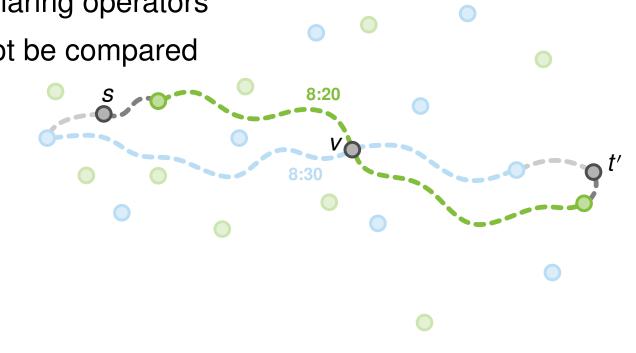
8:20

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared



Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Two Possible Solutions:

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Two Possible Solutions:

- The Operator-Dependent (OD) model
 - Handle operators in the algorithm explicitly
 - Similar to a third dominance criterion

Greatest Challenge:

- Distinguish and handle multiple bike sharing operators
- Labels with different rental bikes cannot be compared

Two Possible Solutions:

- The **Operator-Dependent** (OD) model
 - Handle operators in the algorithm explicitly
 - Similar to a third dominance criterion
- The Operator-Expanded (OE) model
 - Encode operators within a "normal" network
 - Use an existing algorithm with the modified network

Basic Idea:

- Treat bike sharing as an additional optimization criterion
- Handle renting and returning of bicycles with the algorithm

Basic Idea:

- Treat bike sharing as an additional optimization criterion
- Handle renting and returning of bicycles with the algorithm

Integration into multi-Modal multi-Criteria RAPTOR (MCR): [Delling et al. 2013]

Naive:

Use label-bags of MCR for bike sharing operators

Basic Idea:

- Treat bike sharing as an additional optimization criterion
- Handle renting and returning of bicycles with the algorithm

Integration into multi-Modal multi-Criteria RAPTOR (MCR): [Delling et al. 2013]

Naive:

Use label-bags of MCR for bike sharing operators

Bag per stop, #trips

Basic Idea:

- Treat bike sharing as an additional optimization criterion
- Handle renting and returning of bicycles with the algorithm

Integration into multi-Modal multi-Criteria RAPTOR (MCR): [Delling et al. 2013]

- Naive:
 - Use label-bags of MCR for bike sharing operators
- Observation:
 - Bike sharing operators are few and discrete
 - Scan routes separately for each operator

Bag per stop, #trips

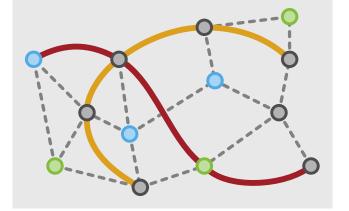
Basic Idea:

- Treat bike sharing as an additional optimization criterion
- Handle renting and returning of bicycles with the algorithm

Integration into multi-Modal multi-Criteria RAPTOR (MCR): [Delling et al. 2013]

- Naive:
 - Use label-bags of MCR for bike sharing operators
- Observation:
 - Bike sharing operators are few and discrete
 - Scan routes separately for each operator

Bag per stop, #trips ↓ Entry per stop, #trips, operator

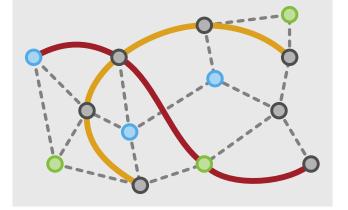

5 - Faster Multi Medal Doute Dispring with Dike Charing Ling LI TDA

5 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

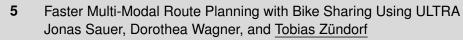
The Operator-Expanded (OE) Model

Basic Idea:

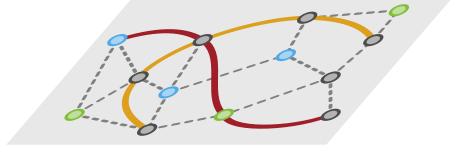
Encode bike sharing within a "normal" network



Basic Idea:


Encode bike sharing within a "normal" network

Our Approach:

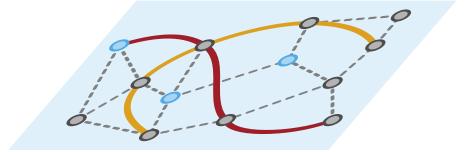


Basic Idea:

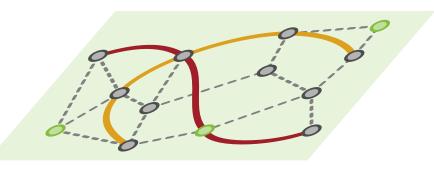
Encode bike sharing within a "normal" network

Our Approach:

5 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

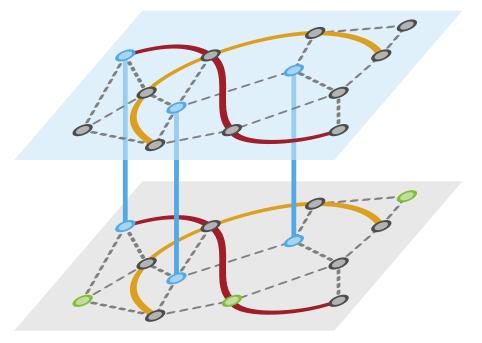

The Operator-Expanded (OE) Model

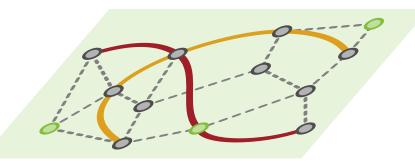
Basic Idea:


Encode bike sharing within a "normal" network

Our Approach:

Copy network once per operator


Karlsruhe Institute of Technology


Basic Idea:

Encode bike sharing within a "normal" network

Our Approach:

- Copy network once per operator
- Connect networks at bike sharing stations

Karlsruhe Institute of Technology

Basic Idea:

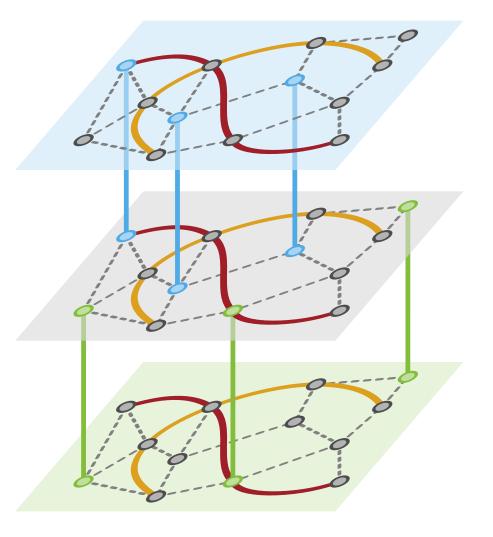
Encode bike sharing within a "normal" network

Our Approach:

- Copy network once per operator
- Connect networks at bike sharing stations

Basic Idea:

Encode bike sharing within a "normal" network


Our Approach:

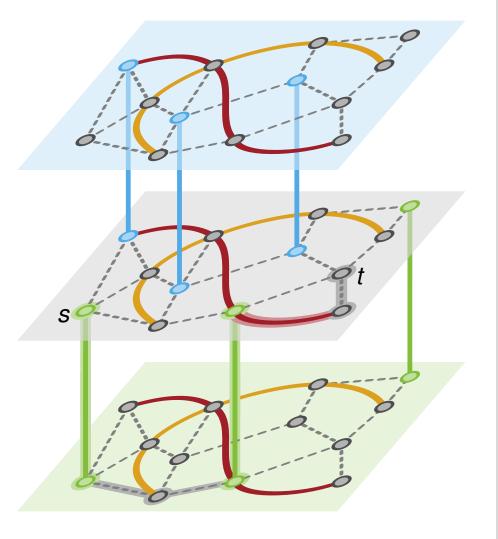
- Copy network once per operator
- Connect networks at bike sharing stations

Properties:

- Any existing algorithm can run on this network
- Using the green network ⇔ Renting a green bike (Using the blue network ⇔ Renting a blue bike)

Basic Idea:

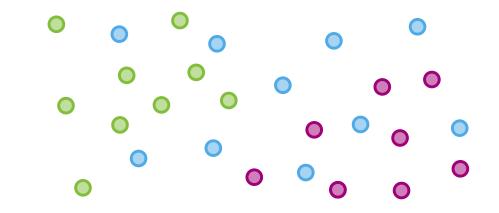
Encode bike sharing within a "normal" network

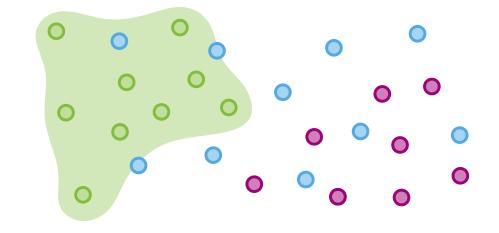

Our Approach:

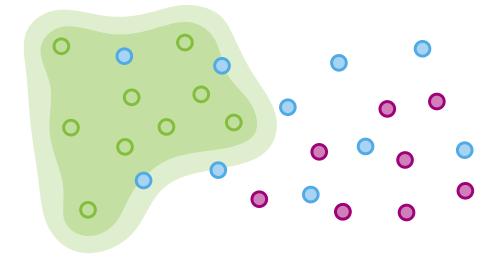
- Copy network once per operator
- Connect networks at bike sharing stations

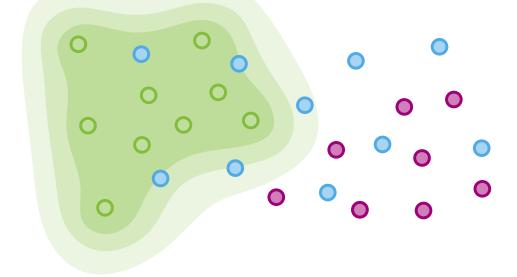
Properties:

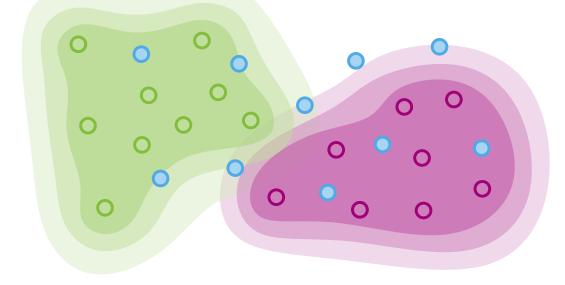
- Any existing algorithm can run on this network
- Using the green network ⇔ Renting a green bike (Using the blue network ⇔ Renting a blue bike)

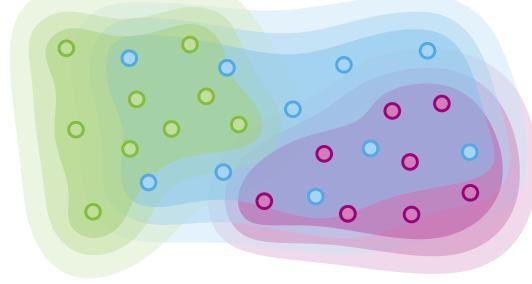



Observation:


Observation:


Observation:


Observation:

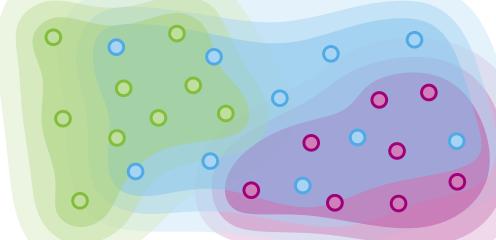

Observation:

Observation:

6 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

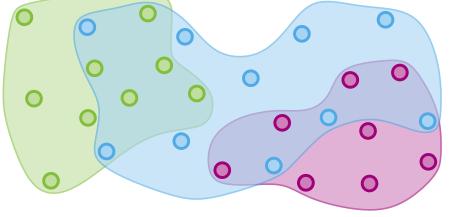
Speed-up Technique: Operator Pruning (OP)

Observation:


Not every rental bike is useful throughout the whole network

Operator Hull \mathcal{H} :

- Subset of the network
- For every bike sharing operator o
- For every vertex/edge/trip x in the network
- If x is used with a bike of o in some optimal journey $\Rightarrow x \in \mathcal{H}(o)$



Observation:

Not every rental bike is useful throughout the whole network

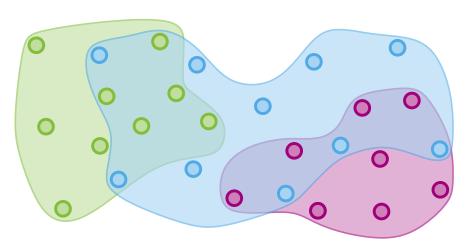
Operator Hull \mathcal{H} :

- Subset of the network
- For every bike sharing operator o
- For every vertex/edge/trip x in the network
- If x is used with a bike of o in some optimal journey $\Rightarrow x \in \mathcal{H}(o)$

6 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Speed-up Technique: Operator Pruning (OP)

Observation:

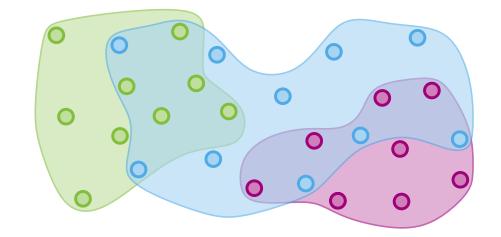

Not every rental bike is useful throughout the whole network

Operator Hull \mathcal{H} :

- Subset of the network
- For every bike sharing operator o
- For every vertex/edge/trip x in the network
- If x is used with a bike of o in some optimal journey $\Rightarrow x \in \mathcal{H}(o)$

Preprocessing:

Computing $\mathcal{H}(o)$ can be done with standard MCR



Observation:

Observation:

Not every rental bike is useful throughout the whole network

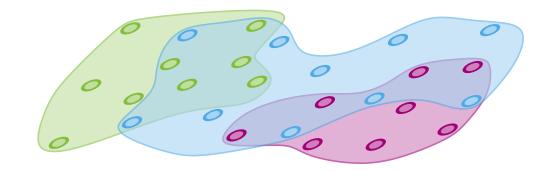
Operator-Dependent Queries:

• Use $\mathcal{H}(o)$ to prune the search space

6 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

Speed-up Technique: Operator Pruning (OP)

Observation:


Not every rental bike is useful throughout the whole network

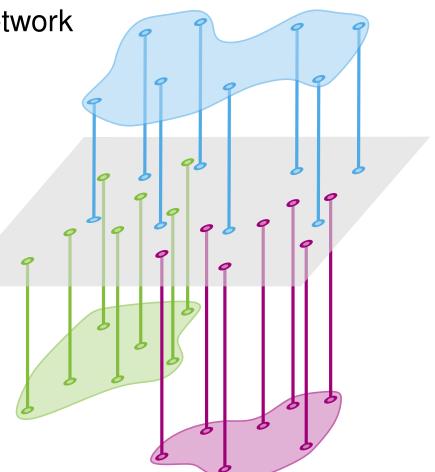
Operator-Dependent Queries:

• Use $\mathcal{H}(o)$ to prune the search space

Operator-Expanded Queries:

- Build a reduced Network
- Do not copy the whole network
- Use $\mathcal{H}(o)$ as copy for operator o

Observation:

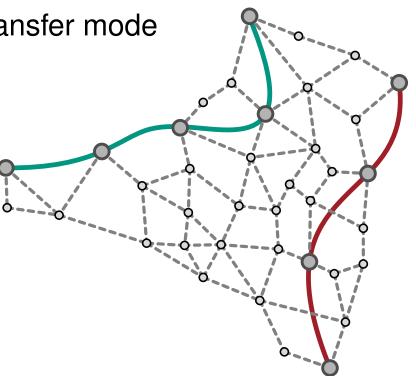

Not every rental bike is useful throughout the whole network

Operator-Dependent Queries:

• Use $\mathcal{H}(o)$ to prune the search space

Operator-Expanded Queries:

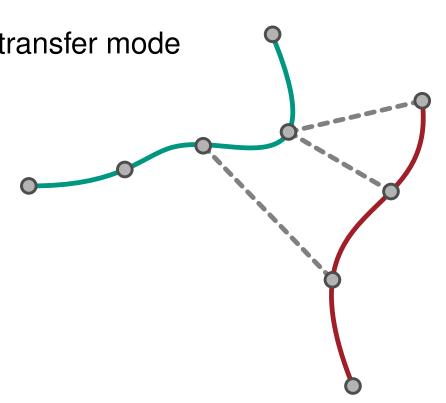
- Build a reduced Network
- Do not copy the whole network
- Use $\mathcal{H}(o)$ as copy for operator o



⁶ Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

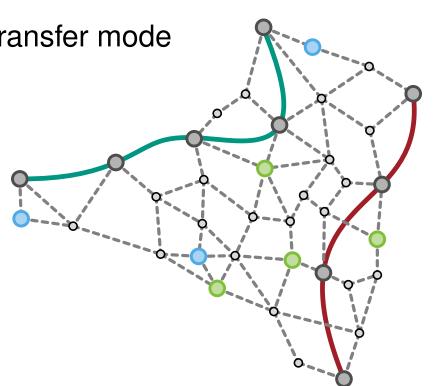

ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

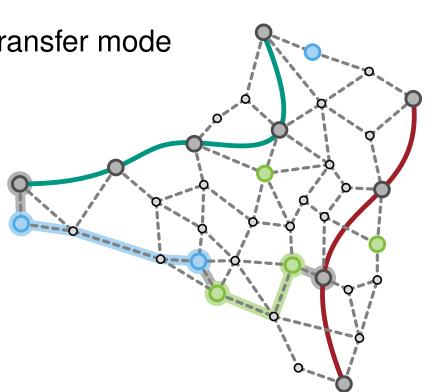
- Check if bike sharing is useful while transferring
- If so, represent the transfer with a single shortcut
- Independent of the number of bikes rented



ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

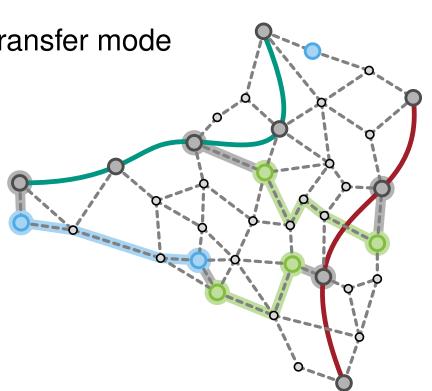
- Check if bike sharing is useful while transferring
- If so, represent the transfer with a single shortcut
- Independent of the number of bikes rented



ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

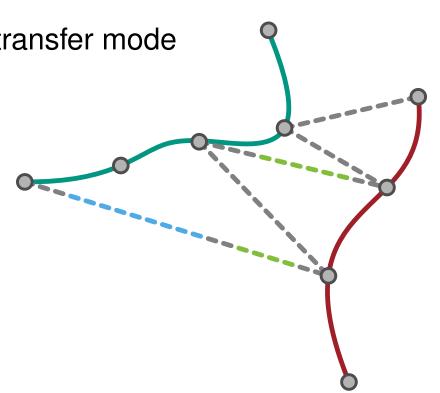
- Check if bike sharing is useful while transferring
- If so, represent the transfer with a single shortcut
- Independent of the number of bikes rented



ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

- Check if bike sharing is useful while transferring
- If so, represent the transfer with a single shortcut
- Independent of the number of bikes rented

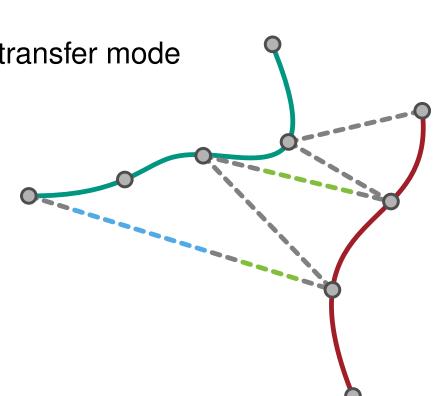


ULTRA (UnLimited TRAnsfers) overview:

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

- Check if bike sharing is useful while transferring
- If so, represent the transfer with a single shortcut
- Independent of the number of bikes rented

ULTRA (UnLimited TRAnsfers) overview:

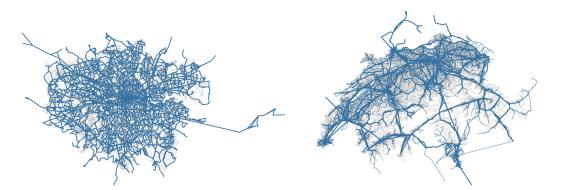

- Speed-up technique for public transit + one additional transfer mode
- Replaces the transfer graph with inter-trip shortcuts

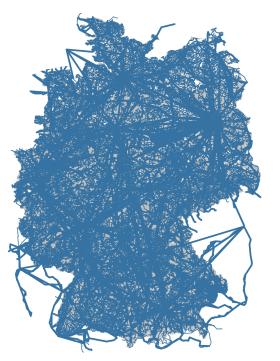
Adaptation for Bike Sharing:

- Check if bike sharing is useful while transferring
- If so, represent the transfer with a single shortcut
- Independent of the number of bikes rented

Solution:

Perform the ULTRA preprocessing on the operator-expanded network




Experimental Evaluation

Instances:

- London, Switzerland, and Germany
- Timetables comprising two days from TfL, GTFS-CH, and DB
- Transfer graphs and bike sharing stations from OpenStreetMap

Network	Stops	Routes	Trips	Vertices	Edges	Stations	Operators
London	20 595	2107	125 k	183 k	579 k	823	4
Switzerland	25 426	13934	369 k	604 k	1 847 k	534	11
Germany	244 055	231 089	2387 k	6872 k	21 372 k	2682	22

8 Faster Multi-Modal Route Planning with Bike Sharing Using ULTRA Jonas Sauer, Dorothea Wagner, and <u>Tobias Zündorf</u>

- Computation of operator hulls is quite fast
- Leads to significantly smaller operator-expanded networks
- Makes ULTRA on the operator-expanded network feasible

	London		Switze	Switzerland		Germany	
	OE	OE-OP	OE	OE-OP	OE	OE-OP	
Expanded stops	102 975	31 216	301 500	36 892	5613265	411 980	
ULTRA shortcuts	1 831 779	521 882	3 389 309	435 514	?	7 873 379	
Operator hulls (sequential)	_	3:01:21	_	50:20	\approx 21 weeks	83:38:15	
Operator hulls (parallel 16)	_	15:34	_	4:15		8:45:22	
Total (CH + OP + ULTRA)	14:15:19	59:33	10:01:54	28:03		40:13:48	

- Computation of operator hulls is quite fast
- Leads to significantly smaller operator-expanded networks
- Makes ULTRA on the operator-expanded network feasible

	London		Switze	Switzerland		Germany	
	OE	OE-OP	OE	OE-OP	OE	OE-OP	
Expanded stops	102 975	31 216	301 500	36 892	5613265	411 980	
ULTRA shortcuts	1 831 779	521 882	3 389 309	435 514	?	7 873 379	
Operator hulls (sequential)	_	3:01:21	_	50:20	\approx 21 weeks	83:38:15	
Operator hulls (parallel 16)	_	15:34	_	4:15		8:45:22	
Total (CH + OP + ULTRA)	14:15:19	59:33	10:01:54	28:03		40:13:48	

- Computation of operator hulls is quite fast
- Leads to significantly smaller operator-expanded networks
- Makes ULTRA on the operator-expanded network feasible

	London		Switze	Switzerland		Germany	
	OE	OE-OP	OE	OE-OP	OE	OE-OP	
Expanded stops	102 975	31 216	301 500	36 892	5613265	411 980	
ULTRA shortcuts	1 831 779	521 882	3 389 309	435 514	?	7 873 379	
Operator hulls (sequential)	–	3:01:21	_	50:20	\sim 21 weeks	83:38:15	
Operator hulls (parallel 16)	–	15:34	_	4:15		8:45:22	
Total (CH + OP + ULTRA)	14:15:19	59:33	10:01:54	28:03		40:13:48	

- Computation of operator hulls is quite fast
- Leads to significantly smaller operator-expanded networks
- Makes ULTRA on the operator-expanded network feasible

	London		Switze	Switzerland		Germany	
	OE	OE-OP	OE	OE-OP	OE	OE-OP	
Expanded stops	102 975	31 216	301 500	36 892	5613265	411 980	
ULTRA shortcuts	1 831 779	521 882	3 389 309	435 514	?	7 873 379	
Operator hulls (sequential)	–	3:01:21	_	50:20	\sim 21 weeks	83:38:15	
Operator hulls (parallel 16)	–	15:34	_	4:15		8:45:22	
Total (CH + OP + ULTRA)	14:15:19	59:33	10:01:54	28:03		40:13:48	

- Computation of operator hulls is quite fast
- Leads to significantly smaller operator-expanded networks
- Makes ULTRA on the operator-expanded network feasible

	London		Switze	Switzerland		Germany	
	OE	OE-OP	OE	OE-OP	OE	OE-OP	
Expanded stops	102975	31216	301 500	36 892	5613265	411 980	
ULTRA shortcuts	1 831 779	521 882	3 389 309	435 514	?	7873379	
Operator hulls (sequential)	-	3:01:21	_	50:20	-	83:38:15	
Operator hulls (parallel 16)	_	15:34	-	4:15	—	8:45:22	
Total (CH + OP + ULTRA)	14:15:19	59:33	10:01:54	28:03	pprox21 weeks	40:13:48	

Average Running Times:

Network	Algorithm -	Preprocessing	Query				
INELWOIK	Algontinin	Time [h:m:s]	Rounds	Vertices	Routes	Time [ms]	
	MCR-OD	0:56	9.55	840 k	171 k	286.8	
Cwitzarland	MCR-OE	1:02	9.55	782 k	171 k	345.0	
Switzerland	MCR-OE-OP	5:40	8.35	144 k	43 k	52.8	
	ULTRA-OE-OP	28:03	8.48	29 k	44 k	21.0	
	MCR-OD	13:19	11.99	17 421 k	2 888 k	9830.1	
Cormony	MCR-OE	15:21	11.99	16 120 k	2889 k	10 599.3	
Germany	MCR-OE-OP	9:05:48	10.24	2091 k	679 k	1 322.7	
	ULTRA-OE-OP	40:13:48	10.38	301 k	688 k	649.3	

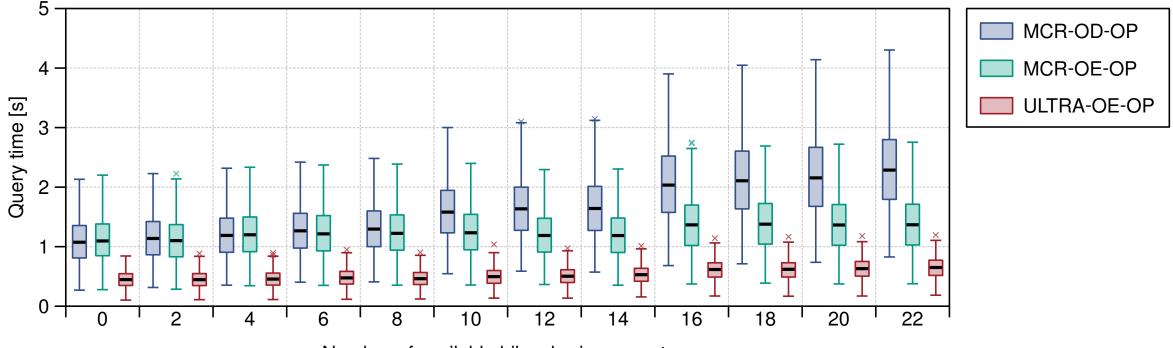
Average Running Times:

Network	Algorithm -	Preprocessing	Query				
INELWOIK	Algontinin	Time [h:m:s]	Rounds	Vertices	Routes	Time [ms]	
	MCR-OD	0:56	9.55	840 k	171 k	286.8	
Cwitzerland	MCR-OE	1:02	9.55	782 k	171 k	345.0	
Switzerland	MCR-OE-OP	5:40	8.35	144 k	43 k	52.8	
	ULTRA-OE-OP	28:03	8.48	29 k	44 k	21.0	
	MCR-OD	13:19	11.99	17 421 k	2888 k	9830.1	
Cormony	MCR-OE	15:21	11.99	16 120 k	2889 k	10 599.3	
Germany	MCR-OE-OP	9:05:48	10.24	2091 k	679 k	1 322.7	
	ULTRA-OE-OP	40:13:48	10.38	301 k	688 k	649.3	

Average Running Times:

Network	Algorithm -	Preprocessing		Query				
INELWOIK	Algoninini	Time [h:m:s]	Rounds	Vertices	Routes	Time [ms]		
	MCR-OD	0:56	9.55	840 k	171 k	286.8		
Cwitzerland	MCR-OE	1:02	9.55	782 k	171 k	345.0		
Switzerland	MCR-OE-OP	5:40	8.35	144 k	43 k	52.8		
	ULTRA-OE-OP	28:03	8.48	29 k	44 k	21.0		
	MCR-OD	13:19	11.99	17 421 k	2 888 k	9830.1		
Cormony	MCR-OE	15:21	11.99	16 120 k	2 889 k	10 599.3		
Germany	MCR-OE-OP	9:05:48	10.24	2091 k	679 k	1 322.7		
	ULTRA-OE-OP	40:13:48	10.38	301 k	688 k	649.3		

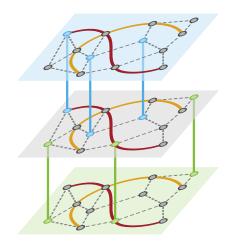
Average Running Times:

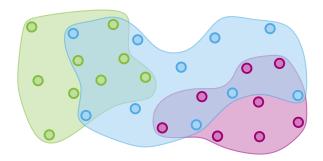

Network	Algorithm -	Preprocessing	Query				
INCLWOIK	Algonium	Time [h:m:s]	Rounds	Vertices	Routes	Time [ms]	
MCR-OD	MCR-OD	0:56	9.55	840 k	171 k	286.8	
Cwitzerland	MCR-OE	1:02	9.55	782 k	171 k	345.0	
Switzerland	MCR-OE-OP	5:40	8.35	144 k	43 k	52.8	
	ULTRA-OE-OP	28:03	8.48	29 k	44 k	21.0	
	MCR-OD	13:19	11.99	17 421 k	2 888 k	9830.1	
Cormony	MCR-OE	15:21	11.99	16 120 k	2889 k	10 599.3	
Germany	MCR-OE-OP	9:05:48	10.24	2091 k	679 k	1 322.7	
_	ULTRA-OE-OP	40:13:48	10.38	301 k	688 k	649.3	

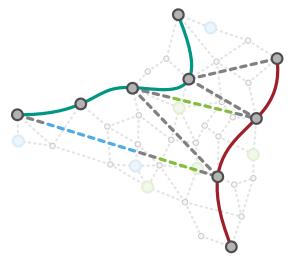
Running Times Depending on Number of Operators:

- Operator-expanded model benefits more from operator-pruning
- ULTRA reduces query time significantly

Number of available bike sharing operators




Conclusion



Our Contribution:

- We introduced two new approaches for modeling bike sharing:
 - Operator-Dependent
 - Operator-Expanded
- We presented a novel speed-up technique: Operator-Pruning
- Overall, we are more than 10 times faster than the base-line

